Teoria dos Grafos - BCC204 PLANARIDADE

Haroldo Gambini Santos

Universidade Federal de Ouro Preto - UFOP

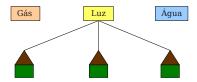
29 de maio de 2011

Notas

Teoria dos Grafos - BCC204, PLANARIDAD

/ 0.2

Oferta de Serviços



Podemos oferecer os demais serviços para as residências sem que as linhas se cruzem ?

 ${\rm Not\,as}$

Teoria dos Grafos - BCC204, PLANARIDAD

2 / 2

Grafo Planar

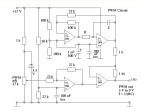
Definição

Um grafo G é planar se existir uma representação gráfica de G no plano sem cruzamento de arestas.

 K_4 é planar ?

Votas			
100 83			

Grafos Planares - Aplicação de Exemplo



- ullet vértices: portas lógicas (gates)
- ullet are stas: fios entre os gates
- encontrar um desenho do circuito sem cruzamento de fios

Teoria dos Grafos - BCC204, PLANARIDAE

/ 23

Grafos de Kuratowski

 K_{-}

Grafo não planar com menor número de ${\bf v\acute{e}rtices}.$

 $K_{3,3}$

Grafo não planar com menor número de arestas.

Teoria dos Grafos - BCC204, PLANARIDAI

5 / 93

Notas

 ${\rm Not\,as}$

 ${\rm Not}\, as$

Grafos de Kuratowski

O que K_5 e $K_{3,3}$ têm em comum:

- ambos são regulares
- ambos são não planares
- a remoção de <u>uma</u> aresta ou um vértice torna o grafo planar
- \bullet K_5 é o grafo não-planar com o menor número de vértices e o $K_{3,3}$ com o menor número de arestas

Planaridade

Teorema:

Qualquer grafo planar simples pode ter sua representação planar utilizando apenas ${f linhas}$ retas.

Notas

Notas

Teoria dos Grafos - BCC204 PLANARIDAI

/ 23

Região ou Face

Definição

Seja Gum grafo planar, uma ${\bf Face}$ é uma região G limitada por algumas arestas de G.

Exemplo

No grafo abaixo temos 6 faces. A última face é o exterior do grafo que também é chamada de Face Infinita.

Teoria dos Grafos - BCC204, PLANARIDADE

8 / 2

Planaridade

Teorema (Fórmula de Euler):

Seja ${\cal G}$ um grafo conexo com

- n vértices
- \bullet m arestas
- \bullet f faces

temos que :

$$n - m + f = 2$$

Implicação: apesar das inúmeras maneiras de se desenhar um grafo no plano, o número de faces irá permanecer o mesmo.

Teoria dos Grafos - BCC204, PLANARIDAD

Notas		

n - m + f = 2

Prova

A Fórmula de Euler é válida para G_1 .

É fácil mostrar que a fórmula de Euler é válida para qualquer árvore, ou seja, um grafo onde m=n-1 e f=1.

Notas

Notas

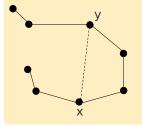
 ${\rm Not}\, as$

Teoria dos Grafos - BCC204, PLANARIDAE

10 / 23

n - m + f = 2

Prova (cont.)



Se G é conexo, então a adição de uma nova aresta a cria um ciclo e, por consequência, uma nova face em G.

Ou seja, adicionar arestas em uma árvore (onde a fórmula de Euler está correta), não modifica o valor obtido pela fórmula.

Teoria dos Grafos - BCC204, PLANARIDADE

11 / 23

A Fórmula de Euler

Corolário

Se Gé um grafo planar conexo com m>1,então

 $m \leq 3n-6$

Prova (p.1)

Defina o grau de uma face como o número de arestas nos seus limites. Se uma aresta aparece duas vezes pelo limiar, então conte duas vezes. Ex.: A região K tem grau 12.

A Fórmula de Euler

Corolário

Se Gé um grafo planar conexo com m>1,então

$$m \leq 3n-6$$

Prova (p.2)

Note que nenhuma face po de ter menos do que grau 3 (trabalhamos com grafos simples). $2m = {\rm soma~dos~graus~das~faces} \geq 3f ~~{\rm ou~seja} ~~ f \leq \tfrac{2}{3}m$

 ${\bf Combinando\ a\ desigualdade\ acima\ com\ a\ F\'ormula\ de\ Euler\ temos:}$

$$\frac{2}{3}m \ge f = m - n + 2$$

resolvendo para m temos:

$$\frac{2}{3}m \ge f = m - n + 2$$
$$m \le 3n - 6$$

Notas

A Fórmula de Euler

Exercício

Encontre um exemplo de Grafo com

$$m \le 3n - 6$$

que não seja planar.

14 / 23

Exercícios

- \blacksquare Prove matematicamente que os grafos K_5 e $K_{3,3}$ não são planares.
- $oldsymbol{0}$ Prove que em um grafo planar com n vértices, existe pelo menos 1 vértice de grau menor ou igual a $5\,.$
- ${\color{red} \bullet}$ Encontre o número de arestas de um grafo no qual toda região é limitada por exatamente k arestas.
- \blacksquare Mostre que se um grafo simples G tem pelo menos 11 vértices, ambos G e seu complemento não podem ser planares.

Notas			
Notas			

Detecção de Planaridade

Em um grafo G podemos, com segurança, contrair todos os vértices de grau 2 sem afetar sua planaridade. Esse processo é chamado de Redução Elementar.

Depois dessa operação, o grafo resultante ${\cal H}$ é:

- uma única aresta;
- $oldsymbol{2}$ um grafo completo com 4 vértices; ou
- \bullet um grafo com $n \geq 5$ e $m \geq 7$.
- $\bullet\,$ se Hestiver nas condições 1 ou 2 ele é planar, senão, continua-se a investigação.

Notas

Teoria dos Grafos - BCC204, PLANARIDAD

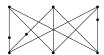
6 / 23

Homeomorfismo

Definição

Dizemos que um grafo H é homeomorfo a G se H puder ser obtido de G pela inserção de vértices de grau 2 em pontos intermediários de suas arestas.

De outro modo: dois grafos G_1 e G_2 são homeomorfos se os grafos H_1 e H_2 obtidos a partir da redução elementar de G_1 e G_2 , respectivamente, forem isomorfos.



Teoria dos Grafos - BCC204, PLANARIDADE

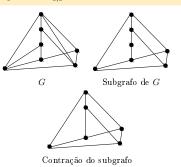
17 / 2

Notas

Detecção de Planaridade

Teorema de Kuratowski, 1930

Um grafo é planar se e somente se nenhum de seus subgrafos for homeomorfo a K_5 ou em $K_{3,3}$.



s Grafos - BCC204, PLANARIDAE

18 / 23

Notas			

Planar Maximal

Definição

Um grafo planar G é chamado Planar Maximal se, para cada par (i,j) de vértices não adjacentes o grafo G+(i,j) não é planar.

Notas

Teoria dos Grafos - BCC204 PLANABIDAD

9 / 23

Dualidade

Dado um grafo G planar, o grafo G^{\ast} chamado dual de G, é construído da seguinte forma:

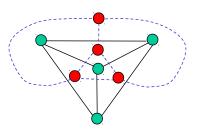
- \bullet para cada face f de $G,\,G^*$ tem um vértice
- ullet una os dois vértices de G^* da seguinte forma:
 - \bullet se 2 regiões f_i e f_j são adjacentes (possuem alguma aresta em comum) colo que uma aresta entre v_i e v_j interceptando a aresta em comum;
 - \bullet se existir mais de uma aresta em comum entre f_i e f_j coloque uma aresta entre v_i e v_j para cada aresta em comum;
 - \bullet se uma aresta está inteiramente em uma região, $f_k,$ coloque um loop no vértice $v_k.$

O termo dual se justifica pois $G^{**}=G$

Teoria dos Grafos - BCC204, PLANARIDADE

20 / 23

Dualidade



Notas			
Notas			
	·	·	

Dualidade

Todo dual de G é isomorfo a G^* ?

Teoria dos Grafos - BCC204, PLANARIDA

22 / 23

Exercícios

- lacktriangle Qual o dual de um ciclo C_n ?
- $\ensuremath{\bullet}$ Qual o dual de um cubo 1 ?
- \bullet Mostre que o dual do K_4 é o próprio K_4 . Dê outro exemplo de um grafo que é igual ao seu dual.
- \bullet Prove se a seguinte afirmativa é verdadeira ou falsa e justifique: "Qualquer grafo que tenha n vértices $(n \leq 5)$ e 1 vértice de grau 2 é planar".
- \bullet Prove que toda região de um grafo planar maximal é um triângulo.

Teoria dos Grafos - BCC204, PLANARIDA

23 / 23

Notas		
Notas		
Notas		
110000		

 $^{^{1}}$ um outro sólido platônico