

Teoria dos Grafos,BCC204



Transitividade

Se podemos ir de v a w, ou seja, w é atingível a partir de v e se x é atingível de w então x é atingível a partir de v.

Relação de atingibilidade é transitiva

Teoria dos Grafos, BCC 204

4 / 19

(Transitividade)

Conoc tividado

Conexidade

o nectivida de

Fecho Transitivo

Grafo não direcionado

Fecho Transitivo : conjunto dos vértices de um grafo alcançados por um dado vértice v . Esse conjunto é denotado por R(v)

Grafo Direcionado

Fecho Transitivo Direto : conjunto de vértices atingíveis a partir de v. Denotado por $R^+(v)$. Os vértices em $R^+(v)$ são denominados vértices descendentes de v.

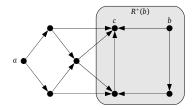
Fecho Transitivo Inverso : conjunto de vértices a partir dos quais v é atingível. Denotado por $R^-(v)$. Os vértices em $R^-(v)$ são denominados vértices ascendentes de v.

Teoria dos Grafos,BCC20

5 / 19

de Conectividade Conexidade Conectividade

Fecho Transitivo Direto - Ex.



Teoria dos Grafos,BCC20

Notas

 Notas

Notas

Conexidade

Grafo Não Direcionado

Em um GND conexo, sempre é possível fazer um percurso fechado (com possível repetição de vértices) que inclua todos os vértices.

Notas

 $Not \, as \,$

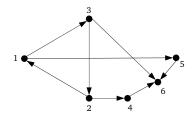
Conexidade Algumas arestas ao serem retiradas aumentam o número de

componentes do grafo. Essas arestas são denominadas pontes.

Ex. a aresta a

8 / 19

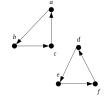
Conexidade em Grafos Direcionados



O grafo acima é conexo ?

 ${\sf Notas}$

Conexidade em Grafos Direcionados



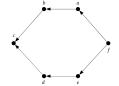
Grafo Não Conexo

Existe ao menos um par de vértices que não é ligado por nenhuma cadeia (com ou sem orientação)

10 / 19

Conexidade em Grafos Direcionados

Conexidade em Grafos Direcionados



Grafo Simplesmente Conexo: s-conexo

Existem cadeias entre todos os pares de vértice (não considerando a orientação)

Lembrando

- ① Qual o Fecho Transitivo de a?
- 2 Qual o Fecho Transitivo Inverso de f ?

 ${\sf Notas}$

Notas

11 / 19

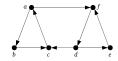
Notas

a	→
<i>-</i>	-

Grafo Semi-Fortemente Conexo: sf-conexo

Para cada par de vértices (v_1, v_2) , existe um caminho de v_1 para v_2 ou de v_2 para v_1 .

Conexidade em Grafos Direcionados



Grafo Fortemente Conexo: f-conexo

Para cada par de vértices (v_1, v_2) , existe um caminho de v_1 para v_2 $\underline{\mathbf{e}}$ de v_2 para v_1 .

oria dos Grafos,BCC204

Transitividade

Conoctividado

Commission

Conectividade

Conectividade

- Aplica-se a Grafos Não Direcionados
- Indica o quanto um grafo é mais conexo do que outro

Definição

A conectividade $\kappa(G)$ de um grafo G = (V, E) é o menor número de <u>vértices</u> cuja remoção <u>desconecta</u> G ou o reduz a um único vértice, o caso de um grafo completo, onde $\kappa(G) = n - 1$.

Teoria dos Grafos,BCC204

14 / 19

Transitividade

Co nec tividade

Conexidade

Conectividade

Conectividade

Para grafos não completos haverá um par (v_1,v_2) de vértices não adjacentes, então temos que:

$$\kappa(G) \le n-2 \quad \forall G \ne K_n$$

Limite superior para qualquer grafo:

$$\kappa(G) \leq \delta(G)^1$$

 $^{1}\delta(G)$: menor grau em um GND.

Notas

-			
-			

 $Not \, as \,$

Notas

-			

Conectividade

Diz-se que um grafo é *h*-conexo se:

$$\kappa(G) \ge h$$

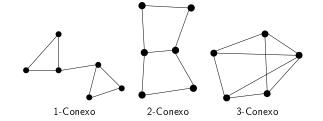
Definição

Dois percursos entre os vértices v e w de um grafo são internamente disjuntos se tocarem apenas em $v \in w$.

Um grafo G = (V, E) é h-conexo se e somente se para todo para $v, w \in V, v \neq w$ existirem ao menos h percursos disjuntos.

Teoria dos Grafos,B00204

Conectividade Conectividade



Teoria dos Grafos,B00204

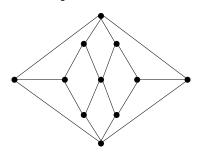
 ${\sf Notas}$

Notas

-			
_			
_			
Т			

Conectividade Exercícios

Qual a conectividade do grafo abaixo ?



Notas			

Exercícios

- Mostre que em grafo sf-Conexo sempre existe um caminho (não necessariamente simples) que passa por todos os vértices.
- Vamos definir como grafo Anti-Regular como um grafo que possua o maior número possível de graus diferentes.

 - a. quantos graus diferentes terá um grau antiregular com n vértices ?
 b. que peculiaridade tem a sequência de graus de um grafo antiregular ?
 c. construa grafos com 8 e 9 vértices que atendam essa definição.

Teoria dos Grafos,B00204

Notas	
Notas	
Notas	