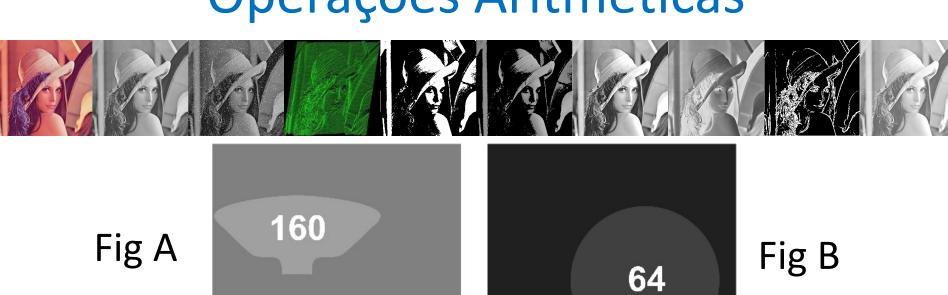
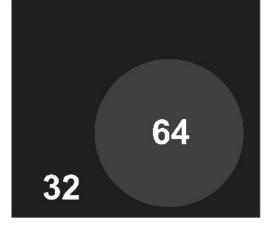
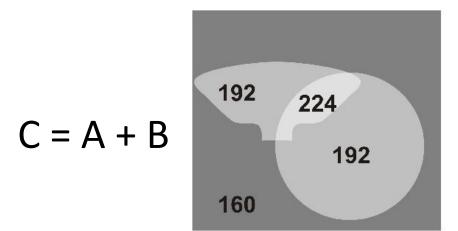
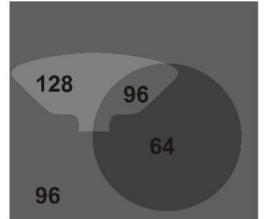

Operações Algébricas e Lógicas

Guillermo Cámara-Chávez


Operações Aritméticas


 São aquelas que produzem uma imagem que é a soma, diferença, produto ou quociente pixel a pixel

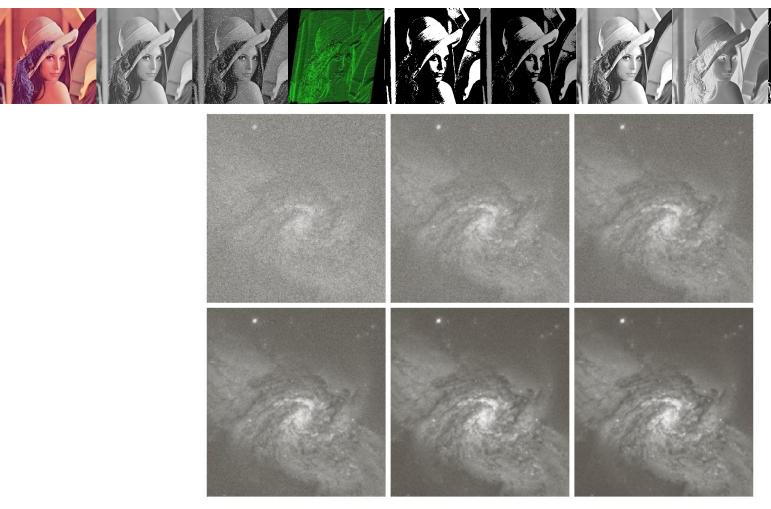



Operações Aritméticas

128

$$C = A - B$$

Operações Aritméticas



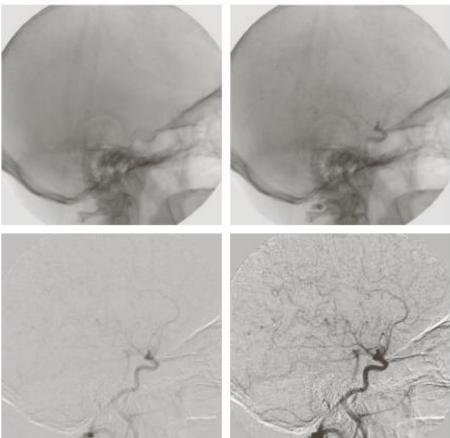
- As quatro operações algébricas de processamento de imagens:
 - -C(x,y) = A(x,y) + B(x,y)
 - -C(x,y)=A(x,y)-B(x,y)
 - -C(x,y) = A(x,y) * B(x,y)
 - -C(x,y)=A(x,y)/B(x,y)
- A(x,y) e B(x,y) são imagens de entrada e C(x,y) é a imagem resultante

Adição:

- Obter a média de múltiplas imagens de uma mesma cena
- Útil para reduzir os efeitos de ruídos aleatórios aditivos
- Pode ser utilizado para colocar conteúdo de uma imagem sobrepondo outra

a b c d e f

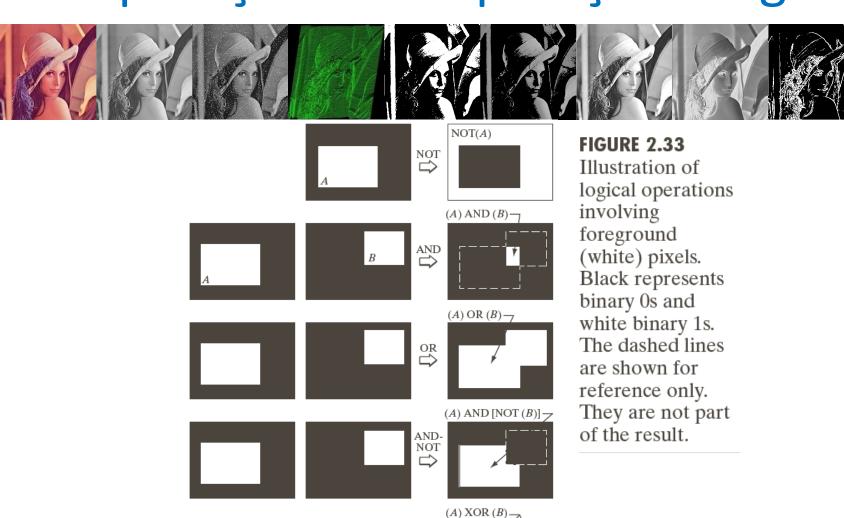
FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)–(f) Results of averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)




```
function [nimg, figs] = NoiseSum(img, n)
nimg = zeros(size(img));
figs = cell(1,n);
for i = 1 : n
  figs{i} = imnoise(img);
  nimg = nimg + double(figs{i});
end
nimg = uint8(nimg / n);
```


- Subtração:
 - Utilizado para remover algum padrão indesejável
 - Detectar mudanças entre duas imagens da mesma cena.
 - Pode ser utilizada para calcular o gradiente (detecção de bordas)

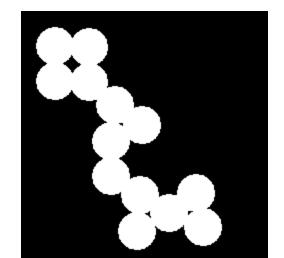
a b c d

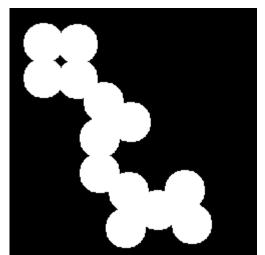

FIGURE 2.28

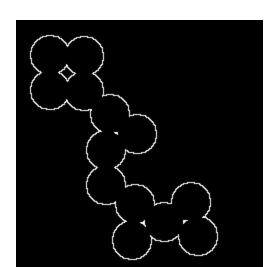
Digital subtraction angiography. (a) Mask image. (b) A live image. (c) Difference between (a) and (b). (d) Enhanced difference image. (Figures (a) and (b) courtesy of The Image Sciences Institute, University Medical Center, Utrecht, The Netherlands.)

- Multiplicação e divisão:
 - Corrigir possíveis defeitos de um digitalizador
 - Multiplicar uma imagem por uma "máscara" pode esconder certas regiões deixando exposto apenas objetos de interesse

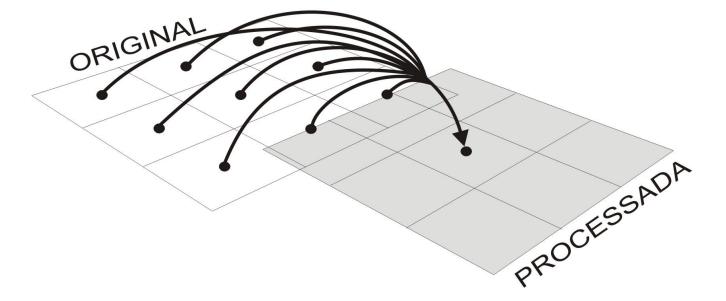
Aplicações das operações Lógicas




XOR


Aplicações das operações Lógicas

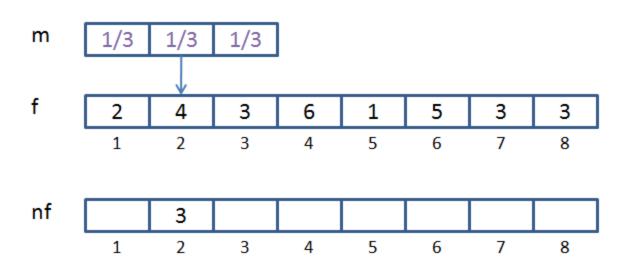

```
img = imread('coins.png');
imgd = imdilate(img, ones(3,3));
img3 = imgd & ~img;
imshow(img2)
```

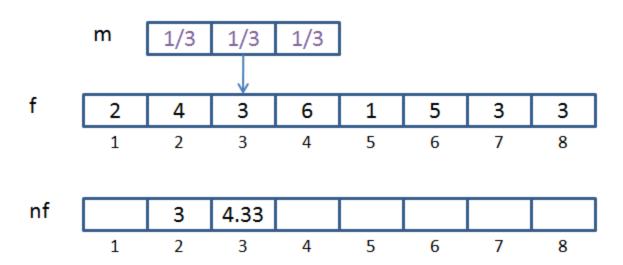
Um *pixel* da imagem resultante depende de uma vizinhança do mesmo *pixel* na imagem original

OpL(
$$f(x_i,y_i)$$
, $f(x_i-1,y_i-1)$, $f(x_i+1,y_i+1)$, $f(x_i-1,y_i+1)$, $f(x_i+1,y_i-1)$, ...)

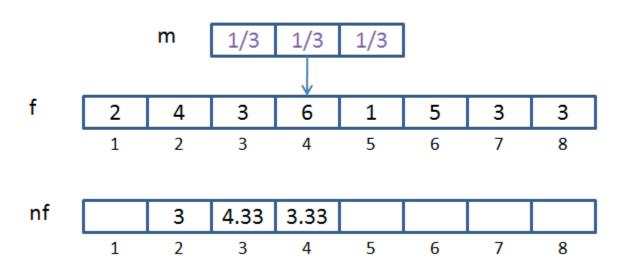
- Utilizam informação dos valores dos pontos vizinhos para modificar o valor de um ponto, ou para verificar a existência de alguma propriedade nesta ponto
- São utilizadas para filtragem espacial e alteração da própria estrutura da imagem.


- Elas podem:
 - "aguçar" a imagem, acentuando as mudanças de intensidades (através de filtros passa-altas)
 - "suavizar" a imagem, tornando as mudanças de intensidades menos abruptas (através de filtros passa-baixas)

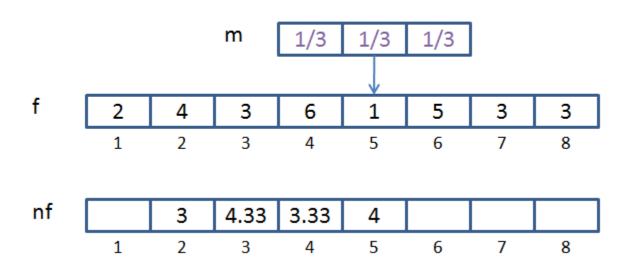
- Elas podem:
 - Procurar formas na imagem através de "padrões de busca" (match)
 - Definir bordas na imagem
 - Remover ruído



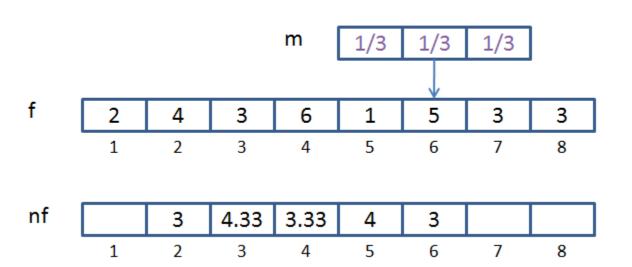
$$nf(2) = 1/3*2 + 1/3*4 + 1/3*3 = 3$$



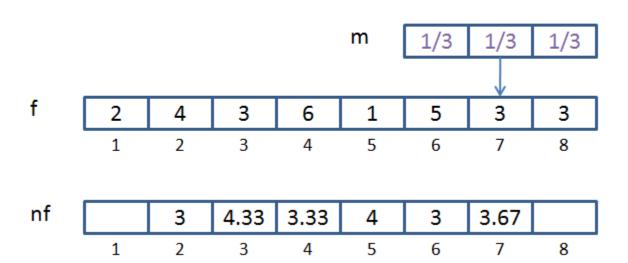
$$nf(3) = 1/3*4 + 1/3*3 + 1/3*6 = 4.33$$



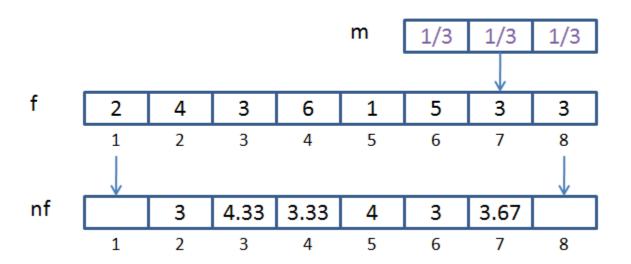
$$nf(4) = 1/3*3 + 1/3*6 + 1/3*1 = 3.33$$



$$nf(4) = 1/3*6 + 1/3*1 + 1/3*5 = 4$$



$$nf(4) = 1/3*1 + 1/3*5 + 1/3*3 = 3$$



$$nf(4) = 1/3*5 + 1/3*3 + 1/3*3 = 3.67$$

$$nf(4) = 1/3*5 + 1/3*3 + 1/3*3 = 3.67$$

- Seja m a máscara de correlação.
- Em geral, seleciona-se uma máscara com um número impar de elementos.
- A correlação do sinal f com a máscara m pode ser expressa como

$$m \bullet f(x) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} m(i) f(x+i)$$

- A convolução consiste em um processo similar
- A máscara m deve sofre uma reflexão.
- A convolução de um sinal f por uma máscara m pode ser expressa como

$$m * f(x) = \sum_{i=\lfloor -m/2 \rfloor}^{\lfloor m/2 \rfloor} m(i) f(x-i)$$

 A filtragem linear de uma imagem f de tamanho MxN com uma máscara m de tamanho mxn está determinada por:

$$g(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} m(s,t) f(x+s, y+t)$$

- A saída de um ponto está determinado pela soma dos valores de entrada ao redor do ponto, cada um multiplicado pelo termo correspondente da máscara.
- Para calcular o próxima valor de saída, máscara deve ser deslocada e a operação soma deve ser repetida.


```
X1=m/2
                                         f: imagem de MxN
Y1=n/2
                                         m: máscara de mxn
Para x=0 até M-1 faça
  Para y=0 até N-1 faça
     soma = 0
       Para i=-x1 até x1 faça
          Para j=-y1 até y1 faça
              soma = soma + m(i,j)*f(x-i,y-j)
      g(x,y) = soma
```


- São usados para borrar uma imagem (bluring) ou para redução de ruído
- O borramento é usado em:
 - operações de pré-processamento.
 - na remoção de pequenos detalhes para extracção de objetos maiores
 - Unir pequenos intervalos em linhas retas ou curvas

- A resposta de um filtro linear espacial "smoothing" é simplesmente a média dos pixels contidos dentro da vizinhança da máscara.
- Este tipo de filtro é conhecido como filtro da média, ou também como filtro passa-baixa

- A técnica é substituir o valor de cada pixel na imagem, pela média dos níveis de cinza da vizinhança definida pela máscara.
- Esta processo resulta em uma nova imagem com redução das transições acentuadas entre níveis de cinza.

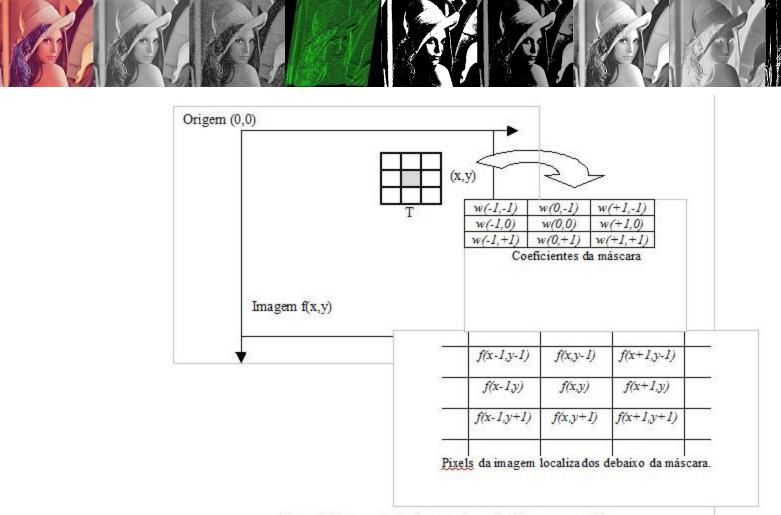
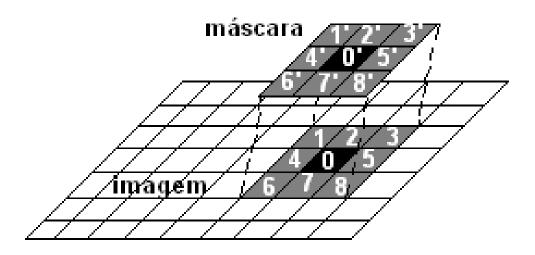



Figura 2: Representação do mecanismo da filtragem espacial.

Na prática (máscara 3x3):

$$0 := 0.0' + 1.1' + 2.2' + 3.3' + 4.4' + 5.5' + 6.6' + 7.7' + 8.8'$$

Algoritmo caro

pode ser reduzido utilizando-se transformada de Fourier

M3x3 =1/9*	1	1	1	
	1	1	1	
	1	1	1	

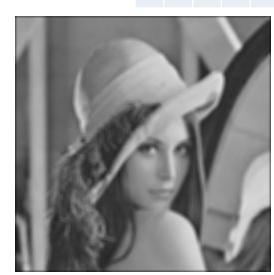
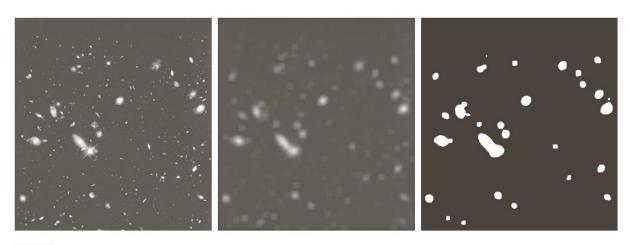

M5x5 =1/25*	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1
	1	1	1	1	1

Imagem original



Blurred com masc 3x3

Blurred com masc 5x5

a b c

FIGURE 3.34 (a) Image of size 528 × 485 pixels from the Hubble Space Telescope. (b) Image filtered with a 15 × 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)

- Tamanhos típicos de máscara de filtragem 3x3, 5x5, 7x7, 9x9 pixels
- A máscara da média é boa para eliminar ruído, mas provoca um borramento da imagem.

- Alguns métodos típicos:
 - Média com pesos: distância ao ponto central
 - Média com os k vizinhos mais próximos
 - Média com pesos espaciais para bordas + linhas
 - Média com vizinhos

- Filtro da média
 - Se o ruído na imagem aparece como erro aditivo, aleatório e descorrelacionado, então os pixels afetados podem ser substituídos por uma média local para reduzir variações

$$M = \frac{1}{E} \sum_{i=1}^{E} p(i)$$

Janela wxw com $E = w^2$ elementos, p(i) = NC's dos pixels

Exemplo

$$W_{3 \times 3} = 10 \ 80 \ 52$$
 $10 \ 49 \ 50$ tem pinta de ser um ruído
$$M = \frac{1}{9} [11 + 50 + 51 + 10 + 80 + 52 + 10 + 49 + 50]$$

$$= \frac{1}{9} \cdot 363 = 40,33 \implies P = p(5) = 40$$

Para contornar o problema de borramento:

$$p = p(5) = \begin{cases} M, & \text{se } |M - p(5)| > T \\ p(i) & \text{caso contrário} \end{cases}$$

$$W_{3x3} = 10 \underbrace{5252}_{10 49 50}$$
 não parece ser diferente da vizinhança

$$M = 1/9 [11 + 50 + 51 + 10 + 52 + 10 + 49 + 50]$$

 $M = 37$

Para:

T = 20

|37 - 52| > 20?

p(5) = 52

Para:

T = 10

|37 - 52| > 10?

p(5) = 37

Outras máscaras de cálculo da média

$$M_1 = 1/10$$
 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
 $M_2 = 1/16$
 $\begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$

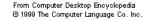
$$W_{3x3} = 10 80 51$$
 $10 49 50$

M1 =
$$1/10 [160+11+50+51+10+52+10+49+50]$$

M1 = $44 \Rightarrow p(5) = 44$

M1 =
$$1/16$$
 [320+11+100+51+20+104+10+98+50]
M1 = $48 \Rightarrow p(5) = 48$

Filtro Gaussiano


$$G_{\sigma}(x,y) = \frac{1}{2\sigma^2 \pi} e^{\frac{-(x^2 + y^2)}{2\sigma^2}}$$

- Faz uma média ponderada com os pixels vizinhos
- Suaviza a imagem

From Computer Desktop Encyclopedia 3 1999 The Computer Language Co. Inc.

Operações Gaussiano

fspecial (tipo, tamanho): cria filtros 2-D pré-definidos

- 'average': averaging filter
- 'disk' : circular averaging filter
- 'gaussian ': Gaussian lowpass filter
- 'laplacian' : filter approximating the 2-D Laplacian operator
- 'log': Laplacian of Gaussian filter
- 'motion': motion filter
- 'prewitt': Prewitt horizontal edge-emphasizing filter
- 'sobel' : Sobel horizontal edge-emphasizing filter
- 'unsharp': unsharp contrast enhancement filter

Operações Gaussiano

imfilter(img, mask, opSaída): convolução entre a imagem img e a máscara mask, opSaída indica o formato de sáida, pode ser "full" ou "same".

 Também pode ser utilizada conv2 (convolução em duas dimensões) e filter2

Operações Gaussiano


```
img = imread('lenna.png');
mask = fspecial('gaussian', [5 5]);
nimg = imfilter(img, mask, 'same');
Imshow(nimg);
```

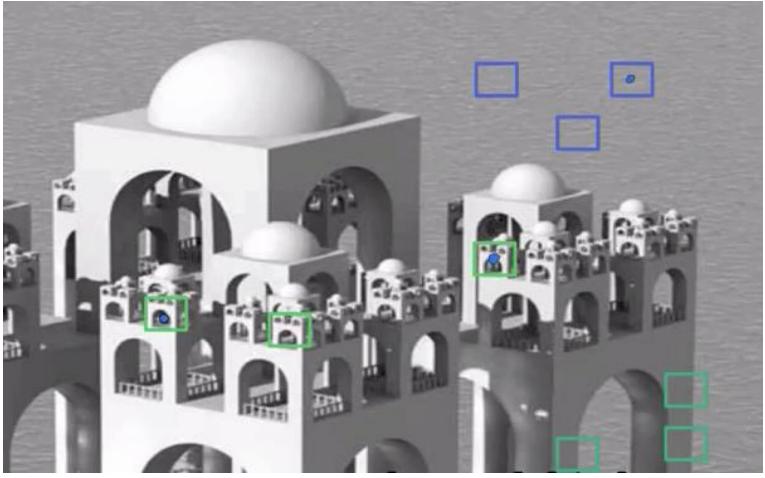
Filtro da média com k vizinhos

- Filtro da média com os k vizinhos mais próximos
 - É um híbrido do método de filtragem pela média.
 - Utiliza a diferença absoluta entre o valor de cada elemento da máscara de filtragem e o ponto central para selecionar os k elementos que participarão do cálculo da média.

Filtro da média com k vizinhos

- Consegue-se redução do ruído com preservação de bordas
- k ↑ redução de ruído ↑ preservação ↓
- k ↓ redução de ruído ↓ preservação ↑
- Valores típicos de k: 2, 4, 6 e 8 (w_{3x3})
- k=6 -> melhor realce

Filtro da média com k vizinhos



$$W_{3x3} = 10 80 52$$
 $k = 6$ 10 49 50

6 vizinhos mais próximos: 52, 51, 50, 50, 49 e 11 M1 = 1/7[80+ 52+51+50+50+49 +11] M1 = 343/7 p(5) = 49

Non local mean

Exercícios Propostos

- 1. Implementar o filtro da média com k vizinhos
- 2. Crie uma função que gere um máscara gaussiana.