Defesa de Dissertação Sirlene Pio, dia 01/08/2017, as 09:00, na Sala de Seminários do DECOM.

Defesa de Dissertação Sirlene Pio, dia 01/08/2017, as 09:00, na Sala de Seminários do DECOM.

Título: RECONHECIMENTO DE CARACTERES EM IMAGENS COM RUÍDO USANDO DEEP LEARNING

Resumo: Devido à degradação e baixa qualidade em imagens com ruído, como imagens de cenas naturais e CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) baseados em texto, o problema de reconhecimento de caracteres continua a ser extremamente desa ador. Neste trabalho, estudamos três abordagens diferentes de redes convolucionais (otimização de arquitetura com filtros aleatórios, aprendizado de filtros não supervisionado e supervisionado) que visam melhorar as representações de característica dessas imagens por meio de deep learning. Nós realizamos experimentos no amplamente utilizado dataset The Street View House Numbers (SVHN), em um novo dataset de CAPTCHAS criado por nós, e em um dataset de placas brasileiras. A abordagem que aprende os pesos dos filtros por meio do algoritmo back-propagation utilizando a técnica data augmentation e a estratégia de agregação de algumas camadas localmente conectadas à rede convolucional obteve resultados promissores para o dataset CAPTCHA (97,36% de acurácia para caracteres e 85,4% para CAPTCHAs) e resultados muito próximos ao estado da arte em relação ao dataset SVHN (97,45 % de acurácia para dígitos). Já no dataset de placas brasileiras, que contém um número de amostras muito inferior aos demais, a abordagem que realiza a otimização de arquitetura com filtros aleatórios obteve os resultados mais promissores. Além disso, analisamos o comportamento da abordagem deep learning que realiza o aprendizado supervisionado de filtros diante da exposição do dataset SVHN a interferências adversas.

 

Departamento de Computação  |  ICEB  |  Universidade Federal de Ouro Preto
Campus Universitário Morro do Cruzeiro  |  CEP 35400-000  |  Ouro Preto - MG, Brasil
Telefone: +55 31 3559-1692  |  decom@iceb.ufop.br