Algoritmo

Prof. Anderson Almeida Ferreira

Agradeço ao prof. Guilherme Tavares de Assis por fornecer slides que fazem parte desta apresentação

Desenvolvimento de programas

- Análise do problema
- Desenvolvimento do algoritmo
- Codificação do programa
- Compilação e execução / Interpretação
- Teste e depuração

Análise do problema

■ Conhecer exatamente o que o problema requer é vital para a solução do mesmo.

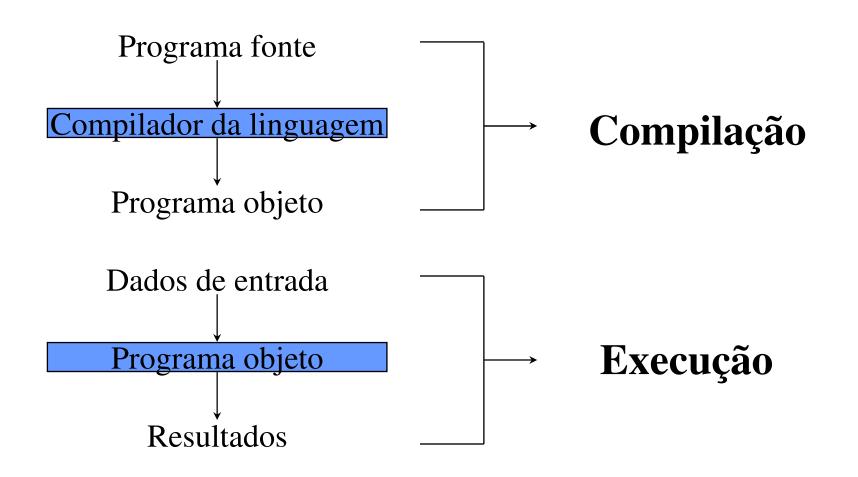
■ Metodologia:

- Especificar de forma clara e precisa os dados de entrada e os dados de saída (resultados) do problema.
- A especificação dos dados de entrada e saída deve responder às seguintes questões:
 - » Quais são os dados de entrada?
 - » Quais são os seus valores válidos e inválidos?
 - » Quais valores serão produzidos?
 - » Qual o formato dos resultados?

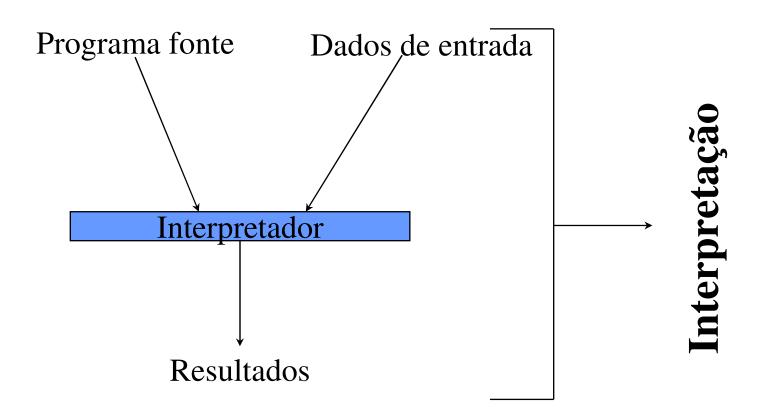
Análise do problema

Problema: cálculo da área de um triângulo

- Quais são os dados de entrada?
 Base e altura do triângulo.
- Quais são os seus valores válidos e inválidos?
 Os dados de entrada devem ser valores numéricos positivos.
- Quais valores serão produzidos?
 Apenas a área do triângulo através da fórmula: (base × altura) / 2.
- Qual o formato dos resultados?
 Um valor numérico positivo.


Desenvolvimento do algoritmo

- **Algoritmo** é um conjunto de passos lógicos bem organizado e suficientemente detalhado para se resolver um problema.
- A elaboração do algoritmo pressupõe o conhecimento prévio dos métodos, estratégias e fórmulas para a solução do problema.
- A versão inicial descreve, em linhas gerais, as principais funções a serem executadas.
- Em seguida, o algoritmo deve ser refinado até que a sequência de instruções resultante esteja bem clara e detalhada.


Codificação do programa

- O processo de **codificação** se resume no mapeamento das instruções de um algoritmo em instruções de uma linguagem de programação.
- Para um melhor entendimento do programa são essenciais:
 - documentação;
 - indentação;
 - escolha representativa dos identificadores.
- A documentação consiste de:
 - cabeçalho;
 - comentários.

Compilação e execução

Interpretação

Teste e depuração

- **Teste** é o processo de executar um programa com a finalidade de encontrar erros.
- **Depuração** é o processo de localizar e corrigir os erros encontrados.
- Possíveis tipos de erros são:
 - Erros de compilação:
 - » escrever errado um comando;
 - » usar dados inadequados a uma operação.
 - Erros de execução:
 - » divisão por zero;
 - » loop infinito.
 - Erros de lógica:
 - » erro nos limites de uma comparação;
 - » erro nas fórmulas e expressões.

Problema: cálculo da área de um triângulo

Versão inicial do algoritmo:

- Forneça a base e a altura do triângulo
- Realize o cálculo da área do triângulo

- Ref. Forneça a base e a altura do triângulo

 Leia base, altura
- Ref. Realize o cálculo da área do triângulo

Se a base e a altura forem positivos

Então

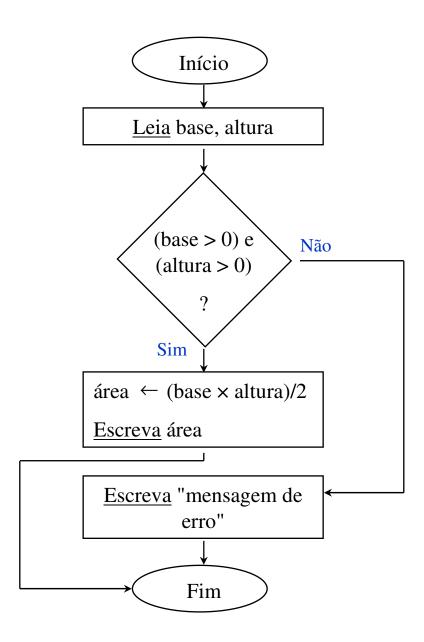
Calcule a área do triângulo

Apresente o valor calculado

<u>Senão</u>

Apresente uma mensagem de erro

Fim Se


- Ref. (condição) <u>Base e altura forem positivos</u> (base > 0) e (altura > 0)
- Ref. Calcule a área do triângulo área ← (base × altura) / 2
- Ref. <u>Apresente o valor calculado</u>
 <u>Escreva</u> área
- Ref. <u>Apresente uma mensagem de erro</u>

 <u>Escreva</u> "mensagem de erro"

Algoritmo final:

```
<u>Leia</u> base, altura
<u>Se</u> (base > 0) e (altura > 0)
<u>Então</u>
área ← (base × altura) / 2
<u>Escreva</u> área
<u>Senão</u>
<u>Escreva</u> "mensagem de erro"
<u>Fim Se</u>
```

Diagrama de blocos ou fluxograma:

Problema: apresentar o menor dentre três valores numéricos.

Versão inicial do algoritmo:

- Forneça os três números
- Determine o menor número
- Apresente o menor número

■ Ref. Forneça os três números Leia A, B, C

■ Ref. Determine o menor número

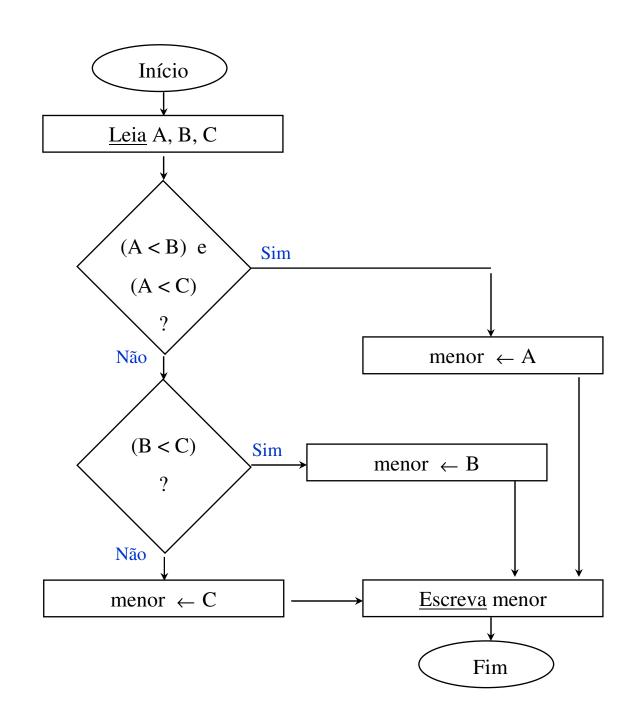
 $\underline{Se}(A < B) e(A < C)$

Então menor \leftarrow A

Senão Determine o menor dentre B e C

Fim Se

■ Ref. Apresente o menor número


Escreva menor

■ Ref. <u>Determine o menor dentre B e C</u>

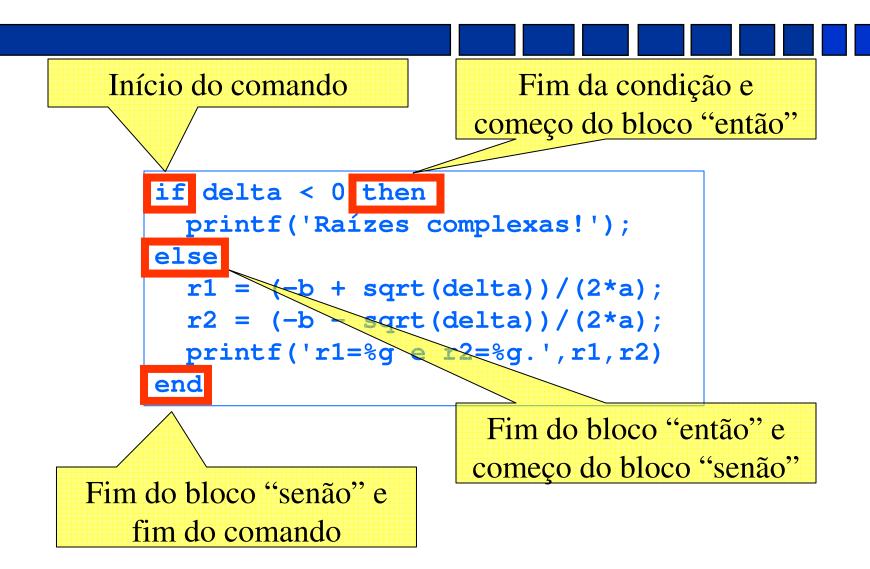
```
\frac{Se}{Ent\tilde{ao}}
menor \leftarrow B
\frac{Sen\tilde{ao}}{menor} \leftarrow C
Fim Se
```

```
Leia A, B, C
Algoritmo final:
                              \underline{Se}(A < B) e(A < C)
                              Então
                                   menor \leftarrow A
                              <u>Senão</u>
                                   Se (B < C)
                                   Então
                                       menor \leftarrow B
                                   Senão
                                       menor \leftarrow C
                                   Fim Se
                              Fim Se
                              Escreva
                                         menor
```

Diagrama de blocos ou fluxograma:

O Comando if

Cláusula else vazia


Equações de Segundo Grau: Programa Scilab — Eq2g_3.sce - 2

```
//Cálculo e impressão das raízes
delta = b^2 - 4*a*c;
if delta > 0 then
  r1 = (-b+sqrt(delta))/(2*a);
  r2 = (-b-sqrt(delta))/(2*a);
 printf("Raízes: %g e %g.",r1,r2);
else
 printf("Raízes complexas.")
end
```

Partes de um comando If

```
<condição>
                               <blood "então">
  if delta >= 0 then
          (-b+sqrt (delta))/(2*a)
    r2 = (-b-sqrt(delta))/(2*a)
    printf("As raízes são %g e %g",r1,r2)
  else
    printf("As raízes são complexas")
                               <blood "senão">
```

Palavras-chave de um Comando if

Operadores Relacionais

>	maior que
>=	maior ou igual a
<	menor que
<=	menor ou igual a
==	igual a
<> ou ~=	diferente de

Tipos primitivos

■ Inteiro

- Ex.: 2, 25, -30, 255
- Ponto-flutante reais
 - Ex.: 2.5, 0.27, 2.456D-5, 2.7D+5
- String Cadeia de caracteres
 - "abcdefghij"
 - 'abcdefghij'
 - "Cadeia de caracteres"
 - 'Programação de computadores'
 - "Programação ""de" computadores"

Exercícios

- Criar um algoritmo e um programa em Scilab que leia dois valores para as variáveis A e B, que efetue a troca dos valores de forma que a variável A passe a ter o valor da variável B e que a variável B passe a ter o valor da variável A. Apresente os valores trocados.
- Criar um algoritmo e um programa em Scilab para calcular e apresentar o valor do volume de uma lata de óleo, utilizando a fórmula:

 $V = 3.14159 \times R^2 \times h$

- onde V é o volume, R é o raio e h é a altura.
- Criar um algoritmo e um programa em Scilab que leia um valor de hora (hora:minutos) e informe (calcule) o total de minutos se passaram desde o início do dia (0:00h).

Problema: apresentar a soma dos números pares de 100 até 200, inclusive.

Versão inicial do algoritmo:

- Realize a soma desejada
- Apresente o valor da soma

Ref. Realize a soma desejada

Inicialize a soma com zero

Inicialize o número par com 100

Enquanto o número par for menor ou igual a 200 Faça

Adicione à soma o valor do número par

Determine o próximo número par

fim enquanto

Ref. Apresente o valor da soma

Escreva soma

Ref. Inicialize a soma com zero

soma $\leftarrow 0$

Ref. <u>Inicialize o número par com 100</u>

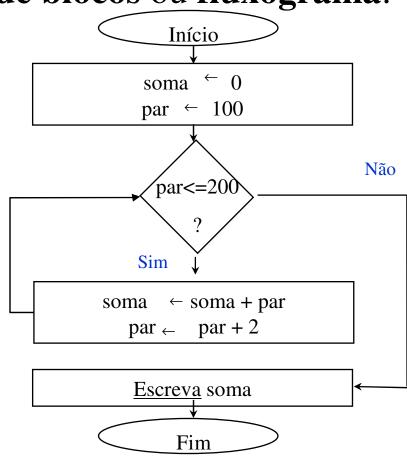
par ← 100

Ref. Adicione à soma o valor do número par

soma ← soma + par

Ref. Determine o próximo número par

 $par \leftarrow par + 2$


Algoritmo final:

```
soma \leftarrow 0
par \leftarrow 100
Enquanto par <= 20 Faça
soma \leftarrow soma + par
par \leftarrow par + 2
```

Fim enquanto

Escreva soma

Diagrama de blocos ou fluxograma:

