Autômato Finito Não Determinístico

Autômato Finito Não Determinístico (AFN)

- Um AFN é uma quíntupla (Q, Σ, δ, I, F), onde:
 - Q é um conjunto finito de um ou mais de estados;
 - $-\Sigma$ é um alfabeto;
 - I, um subconjunto de Q, é um conjunto não vazio de estados iniciais;
 - F, um subconjunto de Q, é o conjunto de estados finais;
 - δ, a função de transição, é uma função total de Q x Σ para $\wp(Q)$.
- Observe que um AFD é um caso particular de AFN.

Exemplo AFN

• $(\{e_1, e_2\}, \{0,1\}, \delta, \{e_1\}, \{e_2\})$, em que δ é

δ	0	1
e ₁	$\{e_1, e_2\}$	{e ₁ }
e_2	Ø	δ

Função de transição estendida

Seja um AFN M=(Q, Σ, δ, I, F). A função de transição estendida β, é uma função de ℘(Q) x Σ* para ℘(Q), definida recursivamente como:

$$\begin{split} \hat{\delta}(\phi,w) &= \phi & \text{para todo } w \in \Sigma^* \\ \hat{\delta}(A,\mathcal{E}) &= A & \text{para todo } \mathsf{A} \subseteq \mathsf{Q} \\ \hat{\delta}(A,ay) &= \hat{\delta}(\cup_{q \in A} \delta(q,a),y) & \text{para todo } \mathsf{A} \subseteq \mathsf{Q} \text{ , a} \in \Sigma \text{ e y } \in \Sigma^*. \end{split}$$

$$L(M) = \{ w \in \sum^* | \hat{\delta}(I, w) \cap F \neq \emptyset \}$$

Exercícios

- Construa AFNs para as seguintes linguagens:
 - 1. $\{0,1\}^*\{1010\}, \Sigma = \{0,1\}$
 - 2. $\{0,00\}\{11\}^*, \Sigma = \{0,1\}$
 - 3. $\{a,b,c\}^*\{abc\}\{a,b,c\}^*, \Sigma = \{a,b,c\}$
 - 4. $\{a,b,c\}^* \{abc,bca\}$, $\Sigma = \{a,b,c\}$

Construção de subconjuntos de estados

Dado um AFN $N = (Q, \Sigma, \delta, I, F)$, o AFD equivalente é

$$M(N) = (Q', \Sigma, \delta', q_0', F')$$
 onde

- O conjunto de estados de M é o conjunto potência de Q : $Q' = P(Q) = \{todos os subconjuntos de <math>Q\}$
- Cada estado de aceitação de M consiste de um subconjunto que contém um estado de aceitação.

I.e.
$$F' = \{S \subseteq Q \mid S \cap F \neq \emptyset \}$$

- O estado inicial de M é o conjunto $q_0' = I$

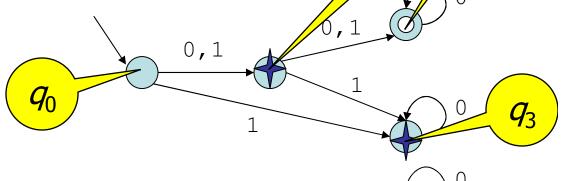
a função δ ' é descrita a seguir:

AFN -> AFD

Função de transição Delta.

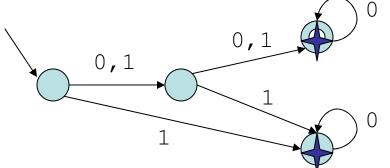
Considere o exemplo

Antes de ler 1:



 q_1

Depois de ler 1:



Q: Porque $\delta'(\{q_1,q_2\},1) = \{q_2,q_3\}$?

Função de transição Delta.

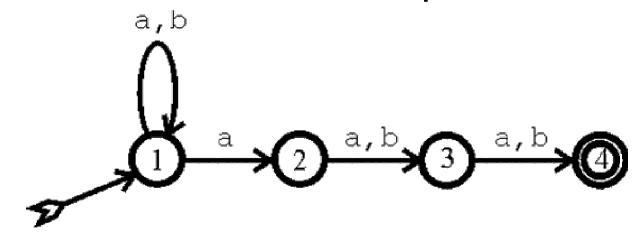
De modo geral temos:

$$\delta'(S, a) = \bigcup_{q \in S} \delta(q, a) = \left\{ q' \in Q \middle| \exists q \in S, q' \in \delta(q, a) \right\}$$

Isso completa a definição formal da construção do AFD cujos estados são subconjuntos de estados do AFN original.

AFN → AFD: na prática.

Vamos ver como o procedimento de conversão funciona na prática.



Q1: Qual é a linguagem aceita pelo AFN?

Q2: Quantos estados tem o AFD correspondente nesse caso?

AFN → AFD: na prática.

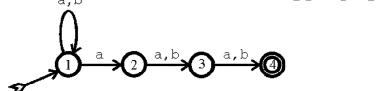
R1: $L = \{x \in \{a,b\}^* \mid 3^{\circ} \text{ bit de } x \text{ a partir da direita \'e a} \}$



R2: $16 = 2^4$ estados.

É um número bastante grande! Seria bom se pudermos construir apenas os estados úteis, i.e., aqueles atingíveis a partir do estado inicial.

10



na prática.

Podemos de fato construir apenas os estados de que precisamos. Começando a partir do estado inicial, fazemos uma pesquisa em largura sobre o grafo!

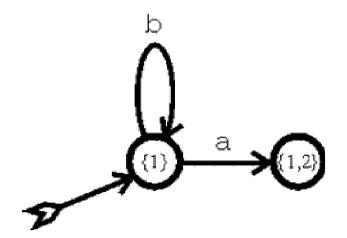
O primeiro estado será {1}:

AFN → AFD: na prática.

Comece com {1}:

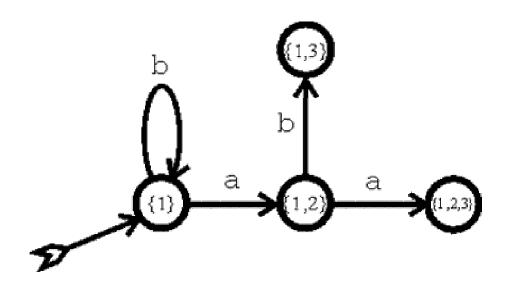
AFN \rightarrow AFD na prática.

Prossiga: note que $\delta(1,a) = \{1,2\}$.



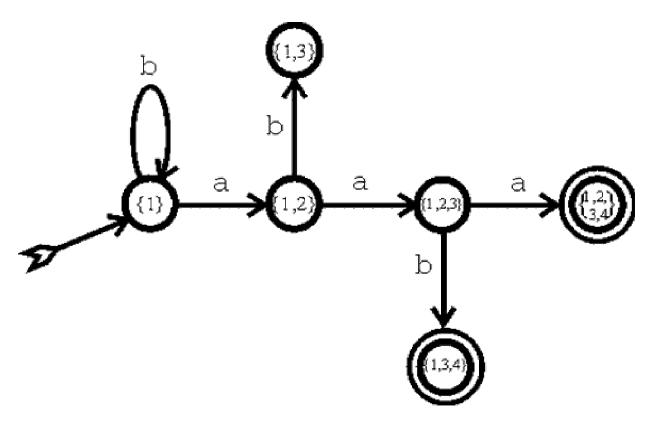
AFN \rightarrow AFD na prática.

Prossiga: note que $\delta'(\{1,2\},a) = \{1,2,3\}.$

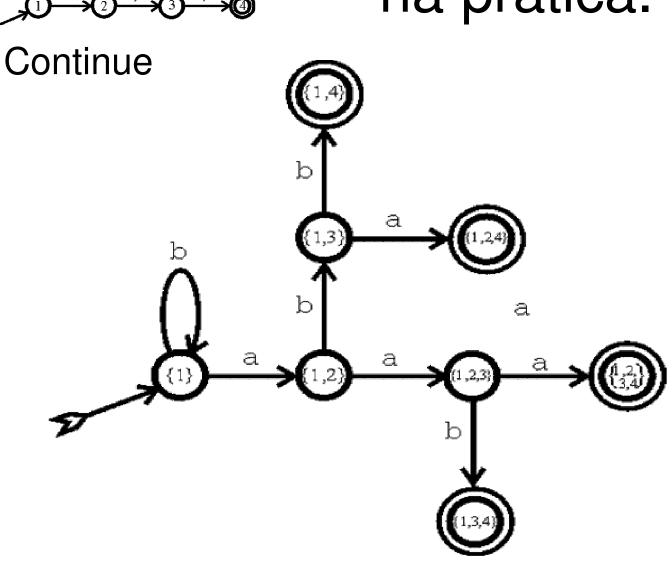


AFN \rightarrow AFD na prática.

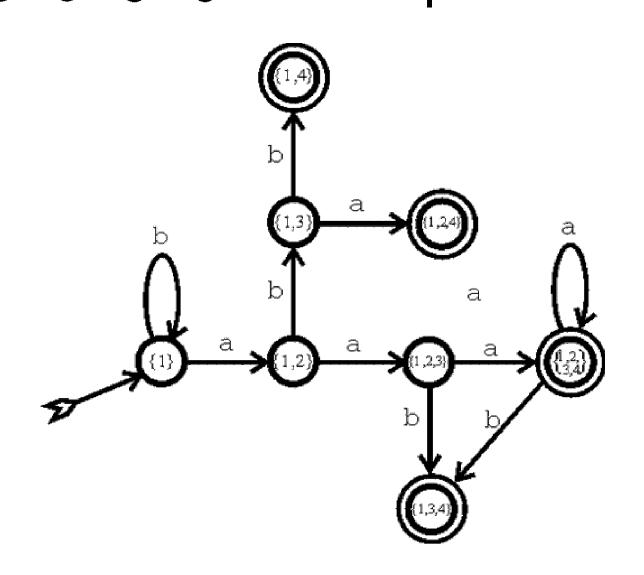
Prossiga: note que $\delta'(\{1,2,3\},a) = \{1,2,3,4\}$



AFN → AFD o na prática.

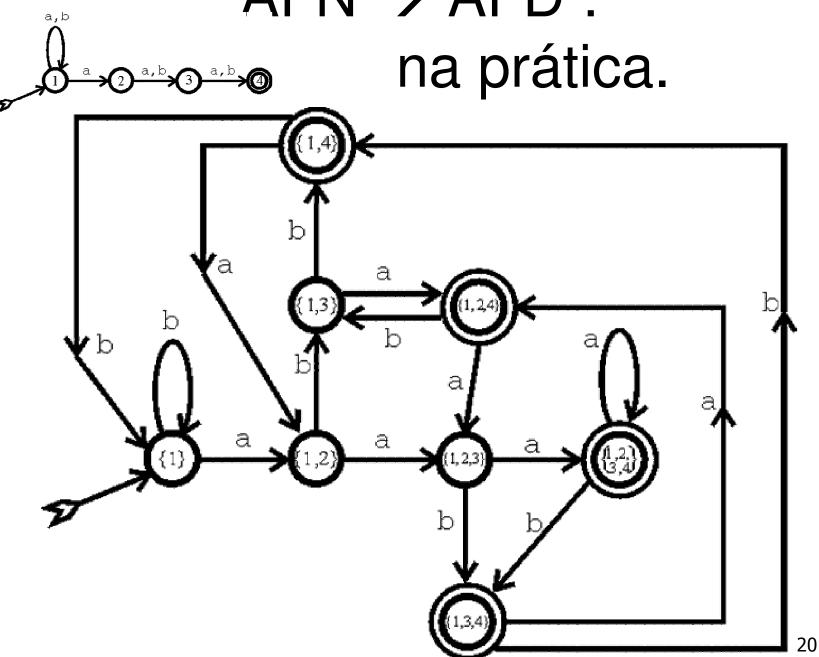


AFN → AFD : na prática.



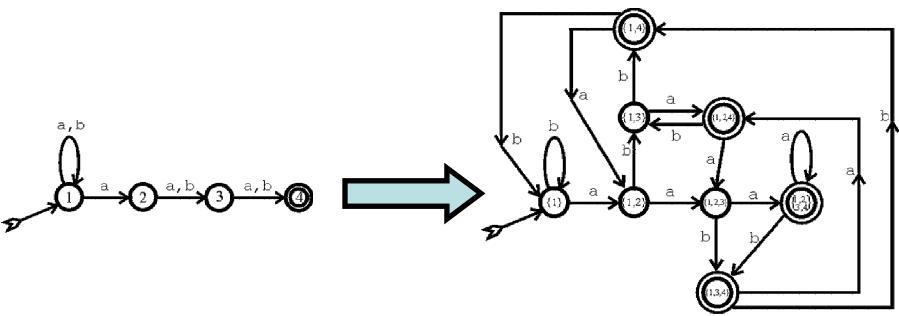
na prática.

na prática.



AFN → AFD : na prática.

Resumindo:



Portanto, economizamos 50% do esforço não construindo todos os possíveis estados.

Exercício

 Transforme os AFNs do exercício anterior em AFDs.

AFN Estendido (AFNE)

- Um AFNE é uma quíntupla (Q, Σ, δ, I, F), onde:
 - Q, Σ, I e F são como os de um AFN e
 - $-\delta$ é uma função parcial QxD para P(Q), onde D é algun subconjunto finito de Σ^* .
- Exemplo: $M = (\{1,2,3\},\{0,1\}, \delta,\{1\},\{2,3\})$

δ	ε	1	00	11
1	{2}	{3}	Ø	Ø
2	Ø	Ø	{2}	Ø
3	Ø	Ø	Ø	{3}

AFN com transições ε (AFN-ε)

- Um AFN-ε é uma quíntupla (Q, Σ, δ, I, F), onde:
 - Q, Σ, I e F são como os de um AFN e
 - $-\delta$ é uma função total $Qx(\Sigma \cup \{\epsilon\})$ para P(Q).
- Exemplo: $M = (\{1,2,3,4,5\},\{0,1\},\delta,\{1\},\{2,3\})$

δ	ε	0	1
1	{2}	{3}	Ø
2	Ø	{4 }	Ø
3	Ø	Ø	{5 }
4	Ø	{2}	Ø
5	Ø	Ø	{3}

Fecho-ε

 Seja um AFN-ε M=(Q, Σ, δ, I, F). A função fecho ε para M, fε, é uma função de P(Q) em P(Q), definida recursivamente como:

$$- f\epsilon(\emptyset) = \emptyset$$

-
$$f\varepsilon(X) = X \cup f\varepsilon(\bigcup_{e \in X} \delta(e, \varepsilon), \text{ para } X \neq \emptyset.$$

• Exemplo: AFN- ε M=({p0, p1, i0,i1},{0,1}, δ ,{p0},{i1})

δ	ε	0	1
p0	{p1}	{i0}	{p0}
p1	Ø	{p1}	{i1}
i0	Ø	{p0}	{i0}
i1	Ø	{i1}	{p1}

$AFN-\varepsilon \rightarrow AFN$

- Para obter um AFN equivalente a um AFN-ε, basta eliminar as transições ε, utilizando a função fecho-ε.
- Seja um AFN-ε M =(Q, Σ, δ, I, F). Uma AFN equivalente a M seria M' = (Q, Σ, δ', I', F), onde:
 - $-I' = f\epsilon(I)$
 - $-\delta'(e, a) = f\epsilon(\delta(e, a))$, para cada $e \in Q$ e $a \in \Sigma$.

Exercício

- Construa AFDs para:
 - $-\{uavbxcy \mid u,v,x,y \in \{a,b,c\}^*\}$
 - {w ∈ {a,b}* | w começa com a e tem tamanho par}
 - $-\{w \in \{a,b\}^* \mid w \text{ tem um número ímpar de b's}\}$