BCC 701 Programação de Computadores I

Professor: Anderson Almeida Ferreira

anderson.ferreira@gmail.com

http://www.decom.ufop.br/anderson

Sala: 44

DECOM - UFOP

Ementa:

Introdução a ambientes de programação.
Conceitos de algoritmo. Conceitos básicos de programação: valores e expressões de tipos primitivos, variáveis, comando de atribuição, comandos de controle de fluxo, entrada e saída padrão, procedimentos e funções, tipos de dados compostos.

Objetivos

- Introduzir noções básicas de organização de computadores, representação de dados e programação
- Apresentar ao aluno alguns princípios básicos da construção de algoritmos e de sua implementação em um ambiente de programação
- Tornar o aluno fluente no uso de uma ferramenta computacional, o Scilab, de vasta aplicação nas ciências e engenharias

Módulo	Conteúdos
1	 Introdução a ambientes de programação; Conceitos e representação de algoritmos; Conceitos básicos de programação: valores, tipos e expressões, variáveis e comandos de atribuição, comandos de entrada e saída, e comandos de desvio de execução.
2	Conceitos básicos de programação: Comandos de controle de fluxo de execução.
3	Conceitos básicos de programação: vetor, matriz e registro.
4	Conceitos básicos de programação: Procedimentos e funções.

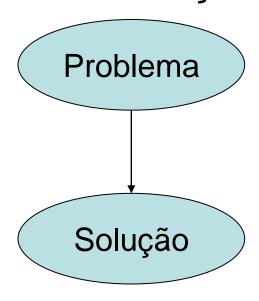
Bibliografia - Básica

- LEITE, M. SciLab Uma Abordagem Prática e Didática - 1ª Ed. Editora Ciência Moderna. Rio de Janeiro, 2009.
- ASCENCIO, A. F. G.; CAMPOS, E. A. V. de. Fundamentos da Programação de Computadores: algoritmos, Pascal, C/C++ e Java. Pearson Education do Brasil Ltda. São Paulo, 2007.
- SOUZA, M. A. F. de; et. al. Algoritmos e Lógica de Programação. Cengage Learning. São Paulo, 2005.

Bibliografia - Complementar

- CHAPMAN, S. J. Programação em MATLAB para Engenheiros – 2ª Edição. Cengage Learning. São Paulo, 2011.
- GILAT, A. MATLAB com Aplicações em Engenharia 4^a Edição. Grupo A Educação. 2012.
- FARRER, H. et. al. Algoritmos Estruturados 3ª Edição. LTC
 Livros Técnicos e Científicos. Rio de Janeiro, 1999.
- GUIMARÃES, A. de M.; LAGES, N. A. de C. Introdução a Ciência da Computação. LTC – Livros Técnicos e Científicos. Rio de Janeiro, 1984.
- MOKARZEL, F.; SOMA, N. Introdução à Ciência da Computação. Elsevier Editora Ltda. Rio de Janeiro, 2008.

- Avaliação:
 - 3 provas (2, 3, 3)
 - Exercícios e trabalhos práticos (2)


Avaliação

Prova	Data (aos sábados)	Valor
Primeira	19/01/2013	2,0
Segunda	23/02/2013	3,0
Terceira	06/04/2013	3,0
Atividades do Professor		2,0
TOTAL	10,0	
Exame Especial	20/04/2013	(a)

Por que estudar programação?

- Todos nós programamos.
- Ao programar construímos algoritmos.
- Ao programar utilizamos lógica.

- Sequência de passos finitos com o objetivo de solucionar problemas.
- Algoritmo não é a solução do problema.

- Todos nós, no dia-a-dia, nos deparamos com vários problemas...
 - Estamos a todo instante concebendo algoritmos...
 - Estamos a todo instante programando...
- Exemplo:
 - 1- Retirar o telefone do gancho
 - 2- Esperar o sinal
 - 3- Discar o número
 - 4- Falar ao telefone
 - 5- Colocar o telefone no gancho

Exemplo

- Algoritmo para trocar lâmpada
 - Se (lâmpada estiver fora do alcance) pegar a escada;
 - Pegar lâmpada;
 - Se (lâmpada estiver quente) pegar pano;
 - Tirar lâmpada queimada;
 - Colocar lâmpada nova.

Exemplo

- Algoritmo para fazer uma prova
 - Ler a prova;
 - Pegar caneta;
 - Enquanto ((houver questão em branco) e (houver tempo)) faça
 - Se (souber a questão)
 Resolva-a;
 - Senão
 Pule para a próxima;
 - Entregar a prova.

 Algoritmo para levar um leão, uma cabra e um pedaço de grama de um lado para outro do rio, usando um bote para tal tarefa. Sabe-se que nunca um leão pode ficar sozinho com uma cabra e nem a cabra sozinha com a grama.

- Algoritmo para levar um leão, uma cabra e um pedaço de grama de um lado para outro do rio, usando um bote para tal tarefa. Sabe-se que nunca um leão pode ficar sozinho com uma cabra e nem a cabra sozinha com a grama.
 - 1- Levar a grama e o leão;
 - 2- Voltar com o leão;
 - 3- Deixar o leão;
 - 4- Levar a cabra;
 - 5- Deixar a cabra;
 - 6- Voltar com a grama;
 - 7- Levar o leão e a grama;
- Forneça outro algoritmo.

- Forneça um algoritmo para o problema das Torres de Hanoi.
- A proposição do problema é a seguinte: inicialmente têm-se 3 hastes, A, B e C, e a haste A tem três anéis de diâmetros distintos, em ordem decrescente. O objetivo é transferir os três anéis da haste A para a B, usando C se necessário. As regras de movimentação são:
 - Deve-se mover um único anel por vez;
 - Um anel de diâmetro maior nunca pode repousar sobre algum outro de diâmetro menor.

- É responsável pela facilidade ou dificuldade da resolução de problemas.
- Na matemática ou na engenharia, por exemplo, o uso da linguagem matemática é fundamental, principalmente pela eliminação de duplos sentidos.
- O mesmo ocorre na computação, com o emprego de linguagens de descrição de algoritmos e de linguagens de programação.

Exemplo:

– Compraram-se 30 canetas iguais, que foram pagas com uma nota de R\$ 100,00, obtendose R\$ 67,00 como troco. Quanto custou cada caneta?

- Uma possível resposta:
 - Se eu tinha R\$ 100,00 e recebi como troco R\$ 67,00, o custo do total das canetas é a diferença entre os R\$ 100,00 que eu tinha e os R\$ 67,00 do troco. Ora, isto vale R\$ 33,00; portanto, esse valor foi o total pago pelas canetas. Para saber quanto custa cada caneta, basta dividir R\$ 33,00 por 30, resultando no preço de cada caneta. Assim, cada caneta custou o equivalente a R\$ 1,10.

- Matematicamente:
 - Seja x o custo de cada caneta, então quantogastei=30x.
 - Como quantogastei + troco = R\$ 100,00, temse:

$$30 x + 67 = 100$$

 $30 x = 100 - 67$
 $30 x = 33$
 $x = 33/30$
 $x = 1.1$

- Algoritmo
 - Pegar os valores 30, 67 e 100.
 - Subtrair 67 de 100 e dividir o resultado por 30.
 - Mostrar o resultado final.

- Algoritmo geral
 - Ler os valores de N, Y e Z.
 - Subtrair Y de Z e dividir o resultado por N.
 - Mostrar o resultado.

- Algoritmo detalhado
 - Ler os valores de N, Y e Z.
 - Se Z > Y e N > 0 e Y ≥ 0 e <math>Z > 0 Então
 - Subtrair Y de Z e dividir o resultado por N.
 - Mostrar o resultado final.

- Senão

- Exibir a mensagem: "Erro: os valores são inconsistentes".
- Fim se

Como se portar em um curso de programação

- O grande problema apresentado pelos estudantes não está relacionado às linguagens de programação ou a descrição de algoritmos, mas sim a dificuldade de abstrair e descrever as soluções de problemas contando apenas com poucas e simples estruturas.
- É um erro decorar as soluções em computação.
- Deve-se procurar o entendimento de como foi obtida um solução, armazená-la na memória e então utilizá-la adaptando-a a outras situações.

Como se portar em um curso de programação

- Não existe uma "fórmula mágica" para resolver problemas. Algumas dicas:
 - Ao deparar-se com um problema novo, tente entendê-lo.
 - O que se deve descobrir ou calcular?
 - Quais são os dados disponíveis?
 - Quais as condições necessárias e suficientes para resolver o problema?
 - Faça um esboço informal de como ligar os dados e com as condições.
 - Se possível, modelar o problema de forma matemática.

- Crie um plano com a solução
 - Consulte a memória e verifique se você já resolveu algum problema similar.
 - Verifique se é necessário introduzir algum elemento novo no problema.
 - Se o problema for complicado, tente quebrá-lo em partes menores e solucionar essas partes.
 - É possível enxergar o problema de outra forma, de modo que seu entendimento se torne mais simples?

- Formalize a solução
 - Crie um algoritmo informal com passos que resolvam o problema.
 - Verifique se cada passo desse algoritmo está correto.
 - Escreva um algoritmo detalhado

Examine os resultados

- Teste o algoritmo com diversos dados de entrada e verifique o resultado.
- Se o algoritmo não gerou resultado algum, o problema está na sua sintaxe e nos comandos utilizados. Volte e tente encontrar o erro.
- Se o algoritmo gerou resultados, estes estão corretos? Analise sua consistência.
- Se não estão corretos, alguma condição, operação ou ordem das operações está incorreta. Volte e tente encontrar o erro.

- Otimização da solução
 - É possível melhorar o algoritmo?
 - É possível diminuir o número de passos ou dados?
 - É possível conseguir uma solução ótima?

Linguagem e o Ambiente Scilab

- Desenvolvido desde 1990 por pesquisadores do INRIA e da ÉcoleNationaledesPontsetChaussées(França)
- Muito semelhante ao MatLab e gratuito!
 - http://www.scilab.org
- É um interpretador
- A linguagem e o sistema têm o mesmo nome, Scilab

Scilab

- Uma linguagem de programação, como as linguagens naturais, une riqueza de expressão a detalhes sintáticos
- Seu aprendizado exige uma postura paciente, pois envolve no início uma taxa inicial de memorização
- Também como nas linguagens naturais, a fluência vem com o uso