
Should Computer Scientists Experiment More?

16 Excuses to Avoid Experimentation

Walter F. Tichy

University of Karlsruhe, Germany

Nov. 1997

Abstract

Computer scientists and practitioners defend
the lack of experimentation with a wide range
of arguments. Some arguments suggest that
experimentation may be inappropriate, too
di�cult, useless, and even harmful. This ar-
ticle discusses several such arguments to illus-
trate the importance of experimentation for
computer science.

This is a preprint of an article with the same
title that appeared in IEEE Computer, 31(5),
May 1998, 32{40.

Keywords: Empiricism, experiments, labo-
ratory, scienti�c method.

1 Is computer science an

experimental science?

Do computer scientists need to experiment at
all? Only if we answer \yes" does it make
sense to ask whether there is enough of it.

In his Allen Newell Award Lecture, Fred
Brooks suggests that computer science is \not
a science, but a synthetic, an engineering
discipline"[2]. In an engineering �eld, test-
ing theories by experiments would be mis-
placed. Brooks and others seem troubled by
the fact that the phenomena studied by com-
puter scientists appear manufactured | com-

puters and programs are human creations, so
we could conclude that computer science is not
a natural science in the traditional sense.

I think that the engineering view of com-
puter science is too narrow, too computer-
myopic. First of all, the primary subjects of
inquiry in computer science are not merely
computers, but information and information
processes[13]. Computers play a dominant role
because they make information processes eas-
ier to model and observe. However, by no
means are computers the only place where in-
formation processes occur. In fact, computer
models compare poorly with information pro-
cesses found in nature, say in nervous systems,
in immune systems, in genetic processes, or,
if you will, in the brains of programmers and
computer users. The phenomena studied in
computer science are much broader than those
arising around computers.

Regarding \syntheticness", I prefer to think
about computers and programs as models.
Modeling is in the best tradition of science,
because it helps us study phenomena closely.
For example, for studying lasing, one needs
to build a laser. Regardless of whether lasers
occur in nature, building a laser does not
make the phenomenon of massive stimulated
emission arti�cial. Superheavy elements must
be synthesized in the lab for study, because
they are unstable and do not occur naturally,

1



yet nobody assumes that particle physics is
synthetic. Similarly, computers and software
don't occur naturally, but they help us model
and study information processes closely. Us-
ing these devices does not render information
processes arti�cial.

A major di�erence to traditional sciences is
that information is neither energy nor matter.
Could this di�erence be the reason we see lit-
tle experimentation in computer science? To
answer this questions, let's look at the purpose
of experiments.

2 Why should we experi-

ment?

When I discuss the purpose of experiments
with mathematicians, they often exclaim that
experiments don't prove a thing. It is true
that no amount of experimentation provides
proof with absolute certainty. What then are
experiments good for? We use experiments for
theory testing and for exploration.

Experimentalists test theoretical predic-
tions against reality. A community gradually
accepts a theory if all known facts within its
domain can be deduced from the theory, if
it has withstood numerous experimental tests
and if it correctly predicts new phenomena.

Nevertheless, there is always an element of
suspense: To paraphrase Dijkstra, an experi-
ment can only show the presence of bugs in a
theory, not their absence. Scientists are keenly
aware of this uncertainty and are therefore
ready to shoot down a theory if contradicting
evidence comes to light.

A good example of theory falsi�cation in
computer science is the famous Knight-and-
Leveson experiment[8]. The experiment was
concerned with the failure probabilities of
multi-version programs. Conventional the-
ory predicted that the failure probability of

a multi-version program was the product of
the failure probabilities of the individual ver-
sions. However, Knight and Leveson observed
in an experiment that the failure probabili-
ties of real multi-version programs were sig-
ni�cantly higher. In essence, the experiment
falsi�ed the basic assumption of conventional
theory, namely that faults in program versions
are statistically independent.
Experiments are also used for exploring ar-

eas where theory and deductive analysis do not
reach. Experiments probe the in
uence of as-
sumptions, eliminate alternative explanations
of phenomena, and unearth new phenomena
in need of explanation. In this mode, exper-
iments help with induction: deriving theories
from observation.
Arti�cial neural networks are a good exam-

ple of this process. After having been dis-
carded on theoretical grounds, experiments
demonstrated properties better than pre-
dicted. Researchers have now developed bet-
ter theories to account for these properties.

2.1 Traditional scienti�c method

isn't applicable

The fact that | in the �eld of computer sci-
ence | the subject of inquiry is information
rather than matter or energy makes no no dif-
ference to the applicability of the traditional
scienti�c method. In order to understand the
nature of information processes, computer sci-
entists must observe phenomena, formulate
explanations and theories, and test them.
There are plenty of computer science the-

ories that haven't been tested. For instance,
functional programming, object-oriented pro-
gramming, and formal methods are all thought
to improve programmer productivity, program
quality, or both. It is surprising that none
of these obviously important claims have ever
been tested in a systematic way, even though
they are all 30 years old and a lot of e�ort

2



has been invested in developing programming
languages and formal techniques.
Traditional sciences use theory test and ex-

ploration iteratively because observations help
formulate new theories that can be tested
later. An important requirement for any ex-
periment, however, is repeatability. Repeata-
bility makes sure that results can be checked
independently and thus raises con�dence in
the results and helps eliminate errors, hoaxes,
and frauds.

2.2 The current level of experi-

mentation is good enough

Suggesting that the current level of experi-
mentation doesn't need to change is based on
the assumption that computer scientists, as a
group, know what they are doing. This argu-
ment maintains that if we need more experi-
ments, we'll simply do them.
But this argument is tenuous; let's look at

the data. In [15], 400 papers were classi-
�ed. Only those papers were considered fur-
ther whose claims required empirical evalua-
tion. For example, papers that proved the-
orems were excluded, because mathematical
theory needs no experiment. In a random sam-
ple of all papers ACM published in 1993, the
study found that of the papers with claims
that would need empirical backup, 40% had
none at all. In journals related to software,
this fraction was 50%. The same study also
analyzed a non-CS journal, Optical Engineer-
ing, and found that in this journal, the fraction
of papers lacking quantitative evaluation was
merely 15%.
The study by Zelkowitz and Wallace[17]

found similar results. When applying con-
sistent classi�cation schemes, both studies re-
port between 40% and 50% unvalidated pa-
pers in software engineering. Zelkowitz and
Wallace also surveyed journals in physics, psy-
chology, and anthropology and again found

much smaller percentages of unvalidated pa-
pers there than in computer science.
Relative to other sciences, the data shows

that computer scientists validate a smaller
percentage of their claims. One could argue
that computer science at age 50 is still young
and hence a comparison with other sciences is
of limited value. I disagree, because 50 years
seems plenty of time for two to three genera-
tions of scientists to establish solid principles.
But even on an absolute scale, I think that
it is scary when half of the non-mathematical
papers make unvalidated claims. Assume that
each idea published without validation would
have to be followed up by at least two valida-
tion studies (that's a very mild requirement).
It follows trivially that no more than one third
of papers published could contain unvalidated
claims. The data suggests that computer sci-
entists publish a lot of untested ideas or the
ideas published are not worth testing.
I'm not advocating replacing theory and en-

gineering by experiment, but I am advocating
a better balance. I advocate balance not be-
cause it would be desirable for computer sci-
ence to appear more scienti�c, but because of
the following principal bene�ts:

� Experiment can help build up a reliable
base of knowledge and thus reduce un-
certainty about which theories, methods,
and tools are adequate.

� Observation and experiment can lead to
new, useful, and unexpected insights and
open up whole new areas of investigation.
Experimentation can push into unknown
areas where engineering alone progresses
only slowly, if at all.

� Experimentation can accelerate progress
by quickly eliminating fruitless ap-
proaches, erroneous assumptions, and
fads. It also helps orient engineering and
theory into promising directions.

3



Conversely, when we ignore experimenta-
tion and avoid contact with reality, we hamper
progress.

2.3 Experiments cost too much

The �rst line of defense against experimenta-
tion goes typically like the following: \Doing
an experiment would be incredibly expensive"
or \For doing this right, I would need hundreds
of subjects, I would be busy for years without
being able to publish, and the cost would be
enormous."

To this, a hard-nosed scientist might say:
\So what?" Instead of being paralyzed by cost
considerations, he or she would �rst probe the
importance of the research question. When
convinced that a fundamental problem is be-
ing addressed, an experienced experimentalist
would then go about planning an appropriate
research program, actively look for a�ordable
experimental techniques, and suggest interme-
diate steps with partial results along the way.

For a scientist, funding potential should not
be the only or primary criterion for decid-
ing what questions to ask. In the traditional
sciences, there is a complex social process at
work in which important questions crystallize.
These become the foci of research, the break-
through goals that open up new areas, and
scientists actively search for economic ways
to conduct the necessary experiments. For
instance, the �rst experimental validation of
General Relativity was tremendously expen-
sive and barely showed the e�ect. The ex-
periment was performed by Sir Issac Edding-
ton in 1919. Eddington used a total solar
eclipse to check Einstein's theory that grav-
ity bends light when it passes near a massive
star. At the time, this was a truly expensive
experiment since it involved an expedition to
Principe Island (West Africa) and the tech-
nology of photographic emulsions had to be
pushed to its limits. However, it was impor-

tant to test whether Einstein was correct or
not.

Not many investigations are of a scope com-
parable to General Relativity, but there are
many smaller, but still important questions to
answer. How can such work be done econom-
ically? Since cost seems to be uppermost in
everybody's mind, I will spend more space on
this issue than on the others. My goal is to
help the cost-conscious scientist or engineer
overcome the cost barrier.

Experiments can indeed be expensive. But
are all of them prohibitively expensive? I
think not. There are meaningful experiments
that �t the budget of small laboratories. There
are also expensive experiments that are worth
much more than their cost. And there is a
wide spectrum in between.

Benchmarking. Though often criticized,
benchmarks are an e�ective and a�ordable
way of conducting experiments. Essentially, a
benchmark is a sample of a task domain; this
sample is executed by a computer or by human
and computer. During execution, well-de�ned
performance measurements are taken. Bench-
marks have been used successfully in widely
di�ering areas, including speech understand-
ing, information retrieval, pattern recognition,
software reuse, computer architecture, perfor-
mance evaluation, applied numerical analysis,
algorithms, data compression, logic synthesis,
and robotics. A benchmark provides a level
playing �eld for competing ideas, and assum-
ing the benchmark is su�ciently representa-
tive, it allows repeatable and objective com-
parisons. At the very least, a benchmark can
quickly eliminate unpromising approaches and
exaggerated claims.

Constructing a benchmark is usually in-
tensive work, but the burden can be shared
among several laboratories. Once a bench-
mark is de�ned, it can be executed repeatedly

4



at moderate cost. In practice, it is necessary
to evolve benchmarks to prevent over-�tting.

Regarding benchmark tests in speech recog-
nition, Raj Reddy writes: \Using common
databases, competing models are evaluated
within operational systems. The successful
ideas then seem to appear magically in other
systems within a few months, leading to a vali-
dation or refutation of speci�c mechanisms for
modeling speech."[14]

In many of the examples cited above, bench-
marks have caused a sudden blossoming of the
area, because they made it easy to identify
promising approaches and discard poor ones.
I agree with Reddy that \all of experimental
computer science could bene�t from such dis-
ciplined experiments."

Costly experiments. When human sub-
jects are involved in an experiment, the cost
often goes up dramatically, while signi�cance
goes down. When are expensive experiments
justi�ed? When the implications of the in-
sights gained outweigh the cost. Let us take
an example. A signi�cant segment of the soft-
ware industry has converted from C to C++
at a substantial cost in retraining. One might
well ask how solidly grounded the decision to
switch to C++ was. Other than case stud-
ies (which are questionable because they don't
generalize easily and may be under pressure to
demonstrate desired outcomes), I'm not aware
of any solid evidence showing that C++ is su-
perior to C with respect to programmer pro-
ductivity or software quality. Nor am I aware
of any independent con�rmation of such ev-
idence. However, while training students in
improving their personal software processes,
my research group has recently observed that
C++ programmers may make many more mis-
takes and take much longer than C program-
mers of comparable training { both during ini-
tial development and maintenance. Suppose

this observation is not a 
uke.1 Then running
experiments to test the fundamental tenets of
object-oriented programming would be truly
valuable. These experiments might save re-
sources far in excess of their cost. The ex-
periments might also have a lasting and pos-
itive e�ect on the direction of programming
language research. They may not only save
industry money, but also save research e�ort.

It is useful to check what scientists in other
disciplines spend on experimentation. Every-
one realizes that drug testing in medicine is
extremely expensive, but only desperate pa-
tients accept poorly tested drugs and thera-
pies. In aeronautics, we demand that airfoils
be tested; expensive wind tunnels have been
built for just this purpose. Numerical simula-
tion has reduced the number of such tests, but
not eliminated them. In many sciences, simu-
lation has become an important form of exper-
imentation, and computer science might also
bene�t from good simulation techniques. In
biology, Wilson names the Forest Fragmenta-
tion Project in Brasilia as the most expensive
biological experiment ever[16]. While clearing
a large tract of the Amazon jungle, isolated
patches of various sizes (1 to 1000 hectares)
were left standing. The purpose was to test
hypotheses regarding the relationship between
habitat size and number of species remain-
ing. And the list of experiments continues {
in physics, chemistry, ecology, geology, clima-
tology, and on and on. Any reader of Scien-
ti�c American can �nd experiments in every
issue. Computer scientists need not be afraid
or ashamed of conducting large experiments
when exploring important questions.

1Just as this article went to press, we learned that

a paper by Les Hatton, \Does OO Really Match the

Way We Think?" will appear in the May issue of IEEE

Software, reporting strong evidence of the negative ef-

fects of C++.

5



2.4 Demonstrations will su�ce

In his 1994 Turing Award lecture, Juris
Hartmanis argues that computer science dif-
fers su�ciently from other sciences to per-
mit di�erent standards in experimentation,
and that demonstrations can take the place of
experiments[5]. I couldn't disagree more. De-
mos can provide proof-of-concepts in the en-
gineering sense, or provide incentives to study
a question further. Too often, however, these
demos merely illustrate a potential. Demon-
strations depend critically on the observers'
imagination and their willingness to extrap-
olate; they do not normally produce solid evi-
dence. To obtain such evidence, a careful anal-
ysis is necessary, involving experiments, data,
and replication.

What would
be interesting questions amenable to experi-
mentation in the traditional sense? Here are
a few examples. The programming process is
poorly understood; computer scientists could
therefore introduce di�erent theories of how
requirements are re�ned into programs and
test them experimentally. Similarly, a deeper
understanding of intelligence might be discov-
ered and tested. The same applies to research
in perception, questions about the quality of
man-machine interfaces, or human-computer
interaction in general. Also, the behavior of
algorithms on typical problems or on comput-
ers with storage hierarchies cannot be pre-
dicted accurately. Better algorithm theories
are needed and should be tested in the labora-
tory. Research in parallel systems is currently
generating a number of machine models; their
relative merits can only be explored experi-
mentally. This list is certainly not exhaustive,
but the examples all involve experiments in
the tradition of science: They require a clear
question, an experimental apparatus to test
the question, data collection, interpretation,
and sharing of the results.

2.5 There is too much noise in

the way

The second line of defense against experimen-
tation goes like this: \There are too many
variables to control, and the results would be
meaningless, because the e�ects I'm looking
for are swamped by noise."

True, experimentation is di�cult { for re-
searchers in all disciplines, not just computer
science. I think researchers who are invoking
this excuse are looking for an easy way out.

An e�ective simpli�cation for repeated ex-
periments is benchmarking. Fortunately,
benchmarking can be used for many ques-
tions in computer science. The subjective and
therefore weakest part in a benchmark test is
the composition of the benchmark; everything
else, if properly documented, can be checked
by the skeptic. Hence, the composition of the
benchmark is always hotly debated (is it rep-
resentative enough?), and benchmarks must
evolve over time to get them closer to what
one wants to test.

Experiments with human subjects involve
many additional challenges. Several �elds
have found techniques for dealing with hu-
man variability, notably medicine and psychol-
ogy. We've all heard about control groups,
random assignments, placebos, pre- and post-
testing, balancing, blocking, blind and double-
blind studies, and the battery of statistical
tests. The fact that a drug in
uences di�erent
people in di�erent ways doesn't stop medical
researchers from testing. And when control
is impossible, then case studies, observational
studies and an assortment of other investiga-
tive techniques are used. Indeed, medicine of-
fers many important lessons on experimental
design, on how to control variables and how
to minimize errors. Eschewing experimenta-
tion because of di�culties is not acceptable.

6



2.6 Progress will slow

The argument here is that if everything must
be backed up by experiment before publica-
tion, then the number of ideas that can be
generated and discussed in the scienti�c com-
munity will be throttled and progress will slow.

This is not an argument to be taken lightly.
In a fast-paced �eld such as computer science,
the number of ideas being discussed is obvi-
ously important. However, experimentation
need not have an adverse e�ect; quite the con-
trary.

First, increasing the ratio of papers with
meaningful validation has a good chance of
actually accelerating progress: Questionable
ideas will be weeded out more quickly and sci-
entists will concentrate their energies on more
promising approaches.

Second, I'm con�dent that good conceptual
papers and papers formulating new hypothe-
ses will continue to be valued by readers and
will therefore get published. It should be un-
derstood that experimental testing of these hy-
potheses will come later.

So it is a matter of balance once more.
Presently, non-theory research rarely moves
beyond the assertive state, a state character-
ized by such weak justi�cation as \it seems
intuitively obvious", or \it looks like a good
idea", or \I tried it on a small example and
it worked." Reaching a ground �rmer than
assertion is desirable.

2.7 Technology changes too fast

This concern comes up frequently in computer
architecture. Trevor Mudge summarizes it:
\...the rate of change in computing is so great
that by the time results are con�rmed they
may no longer be of any relevance."[9] The
same can be said about software. What good
is an experiment when the duration of the ex-
periment exceeds the useful life of the exper-

imental subject, i.e., of a software product or
tool?

If a question becomes irrelevant quickly, it
is perhaps too narrow and not worth spending
a lot of e�ort on it. But behind many ques-
tions with a short lifetime lurks a fundamental
problem with a long lifetime. My �rst advice
to scientists here is to probe the fundamental
and not the ephemeral, and to learn to tell
the di�erence. My second advice hinges on
the observation that technological change of-
ten shifts or eliminates assumptions that were
taken for granted. Therefore, scientists should
anticipate changes in assumptions and pro-
actively employ experiments to explore the
consequences of such changes. Note that this
type of work is much more demanding, and
can have much higher long-term value, than
merely comparing software products.

2.8 You'll never get it published

This is actually partly true. Some established
computer science journals have di�culty �nd-
ing editors and reviewers capable of evaluat-
ing empirical work. Promotion committees
may be dominated by theoreticians. The ex-
perimenter is often confronted with review-
ers who expect perfection and absolute cer-
tainty. However, experiments are conducted in
the real world and are therefore always 
awed
somehow. Reviewers may also build up im-
possibly high barriers. I've seen demands for
experiments to be conducted with hundreds of
subjects over a span of many years involving
several industrial projects before publication.
That smaller steps are still worth publishing
because they improve our understanding and

raise new questions is a thinking that some are
not familiar with.

However, this situation is changing. In my
experience, publication of experimental results
is not a problem of one chooses the right out-
let. I'm on the editorial board of three jour-

7



nals; I review for quite a number of additional
journals and have served on numerous confer-
ence committees. All non-theory journals and
conferences that I've seen would greatly wel-
come papers reporting on solid experiments.
The occasional rejection of high-quality papers
not withstanding, I'm convinced that the low
number of good experimental papers is a sup-
ply problem.

The funding situation for experimentation is
more di�cult, especially in industry/academia
collaborations. However, it helps to note that
experimentation may give industry a three to
�ve year lead over the competition. For ex-
ample, suppose an experiment discovered an
e�ective way to reduce maintenance costs by
using software design patterns. The industrial
partner of such an experiment could exploit
this result immediately, especially since the ex-
periment prepared the groundwork for adopt-
ing the technology. Given a two-year publica-
tion time lag and various other delays (such as
the results being noticed by others, let alone
adopted), the industrial partner in such an
experiment can exploit at least a three-year
lead. Lucent Technologies estimates that it is
presently bene�ting from a �ve-year lead in
software inspection methods based on a series
of in-house experiments,2 apparently despite
(or because of) vigorous publication of the re-
sults.

On the negative side I fear that the \sys-
tems researcher" of old will face di�culties.
Just building systems is not enough unless the
system demonstrates some kind of a \�rst,"
a breakthrough. Computer science continues
to be favored with such breakthroughs and we
should continue to strive for them. The ma-
jority of systems researchers, however, works
on incremental improvements of existing ideas.
These researchers should try to become re-

2Larry Votta, private communication, Lucent

Technolgies.

spectable experimentalists. They must artic-
ulate how their systems contributes to our
knowledge. Systems come and go; insights
about the concepts and phenomena underly-
ing systems are what is needed. I have great
expectations for systems researchers who use
their skills in setting up interesting experi-
ments.

3 Why substitutes won't

work

Can we get by with forms of validation that
are weaker than experiments? It depends on
what question we're asking, but here are some
excuses that I �nd less than satisfactory.

3.1 Feature comparison is good

enough

A frequently found model of a scienti�c paper

is the following. The work describes a new
idea, prototyped perhaps in a small system.
The claim to \scienti�cness" is then made by
feature comparison. The reports sets out a list
of features and qualitatively compares older
approaches with the new one, feature by fea-
ture.

I �nd this method satisfactory when a rad-
ically new idea or a signi�cant breakthrough
is presented, such as the �rst compiler for a
block-structured language, the �rst timeshar-
ing system, the �rst object-oriented language,
the �rst web browser. Unfortunately, the ma-
jority of papers published take much smaller
steps forward. As computer science becomes a
harder science, mere discussions of advantages
and disadvantages or long feature comparisons
will no longer be su�cient. Any PC magazine
can provide those. A science, on the other
hand, cannot live o� such weak phenomeno-
logical inferences in the long run. Instead,

8



scientists should create models, formulate hy-
potheses, and test them using experiments.

3.2 Trust your intuition

In his March 1996 column, Al Davis, the
editor of IEEE Software suggests that gut
feeling is enough when adopting new soft-
ware technology; experimentation and data
are super
uous[3]. He even suggests ignoring
evidence that contradicts one's intuition.

However, instinct and personal experience
sometimes lead down the wrong path and com-
puter science is no exception. Here are some
examples. For about twenty years, it was
thought that meetings were essential for soft-
ware reviews. However, recently Porter and
Johnson found that reviews without meetings
are neither substantially more nor less e�ec-
tive than those with meetings[11]. Meeting-
less reviews also cost less and cause fewer de-
lays, which can lead to a more e�ective inspec-
tion process overall. Another example where
observation contradicts conventional wisdom
is that small software components are propor-
tionally less reliable than larger ones. This ob-
servation was �rst reported by Basili [1] and
has been con�rmed by a number of disparate
sources; see Hatton [6] for summaries and an
explanatory theory. As mentioned, the failure
probabilities of multi-version programs were
incorrectly believed to be the product of the
failure probabilities of the component versions.
Another example is type checking in program-
ming languages. Type checking is thought to
reveal programming errors, but there are con-
texts when it does not help [12]. P
eeger et al.
[10] provides further discussion of the pitfalls
of intuition.

What we can learn from these examples is
that intuition may provide a starting point,
but must be backed up by empirical evidence.
Without grounding, intuition is highly ques-
tionable. What one thinks obvious may turn

out to be dead wrong sometimes.

3.3 Trust the experts

During a recent talk at a top US university,
I was about to present my data, when a col-
league interrupted and suggested that I skip
that part and go on to the conclusions. \We
trust you." was the explanation. Flattering
as that was, it shows a disturbing misunder-
standing of the scienti�c process (or someone
in a hurry). Any scienti�c claim is initially sus-
pect and must be examined closely. Imagine
what would have happened if physicists hadn't
been skeptical about the claims by Ponds and
Fleischman regarding cold fusion.

Frankly, I'm continually surprised how
much the computer industry and sometimes
even university teaching relies on so-called
\experts" of all kinds, who fail to back up their
assertions with evidence. Science, on the other
hand, is built on healthy skepticism. It is a
good system to carefully check results and to
accept them only provisionally until they have
been con�rmed independently.

4 Problems do exist

Here are some excuses that are in
uenced by
the quality of experiments in computer sci-
ence.

4.1 Flawed experiments

\Experiments make unrealistic assumptions",
or \The data was manipulated", or \It is im-
possible to quantify the variable of interest,"
are some of the criticisms. There are many
more potential 
aws: Experimenters may pick
irrelevant questions, may neglect to provide
enough detail for repeating experiments, may
be nonchalant about control, may not validate

9



observations, forget to bound errors, use inap-
propriate measurements, over-interpret their
results, produce results that do not general-
ize, etc.

Good examples of solid experimentation in
computer science are rare. And there will al-
ways be questionable, even bad experiments.
However, the conclusion from this observation
is not to discard the concept of experimenta-
tion. We should keep in mind that other sci-
enti�c �elds have been faced with bad experi-
ments, even frauds. But the scienti�c process
on the whole has been self-correcting. Bad
ideas, errors, and downright hoaxes have been
weeded out, sometimes promptly (see cold fu-
sion) sometimes belatedly (see the Piltdown
man).3

We can be sure of one thing, though: If sci-
entists overlook experimentation or neglect re-
examining others' claims, an important source
of self-correction will be cut o� and the �eld
may drift into the wrong direction.

4.2 Competing theories

A science is most exciting when there are two
or more strong, competing theories. When
a new, major theory replaces an older one,
one speaks of a paradigm shift, while the sta-
ble periods in between are called \normal sci-
ence". Physics provides interesting examples
of paradigm shifts.
There are a few competing theories in com-

puter science, none of them earth-shaking.
The physical symbol system theory vs. the
knowledge processing theory in AI is one of
them. These two theories attempt to explain

3Piltdown man are fossil remains found in England

in 1912. The fossils were thought to be a species of pre-

historic man and generated scholarly controversy that

lasted about 40 years. In 1954, intense re-examination

showed the remains to be fraudulent. The fossils con-

sisted of skillfully disguised fragments of a quite mod-

ern human cranium (50,000 years old), the jaw and

teeth of an orangutan, and the tooth of a chimpanzee.

intelligence. The weak reasoning methods of
the �rst theory have gradually given way, or
have been coupled with, knowledge bases [4].
Other examples include symbolic vs. subsym-
bolic processing, RISC vs. CISC, the various
models for predicting the performance of (par-
allel) computers, and the competition among
programming language families (logic, func-
tional, imperative, object-oriented, rule-based,
constraint-based). Another important exam-
ple is algorithms theory. The present theory
has many drawbacks; in particular, it does
not account for the behavior of algorithms on
\typical" problems[7]. A more accurate the-
ory that applies to modern computers would
be valuable.

A prerequisite for competition among the-
ories is falsi�ability. Unfortunately, computer
science theorists rarely produce falsi�able the-
ories; they tend to pursue mathematical theo-
ries that are disconnected from the real world.4

Thus, it has largely fallen to experimentalists
and engineers to formulate falsi�able theories.

While computer science is perhaps too
young to have brought forth grand theories,
my greatest fear is that the lack of such theo-
ries might be caused by a lack of experimen-
tation. If scientists neglect experiment and
observation, they'll have di�culties discover-
ing new and interesting phenomena worthy of
better theories.

4In Ch. 9 of The Quark and the Jaguar, W.H. Free-

man (1994), Gell-Mann provides a lucid discussion of

the relationship between mathematics and science. If

science is concerned with describing nature and its

laws, then mathematics is not a science, because it

is not concerned with nature; it is concerned with the

logical consequences of certain assumptions. On the

other hand, mathematics can also be viewed as the rig-

orous study of what might have been, i.e., the study

of hypothetical worlds, including the real one. In that

case, mathematics is the most fundamental science of

all.

10



4.3 Soft science

\Soft science" means that experimental results
cannot be reproduced. Experiments with hu-
man subjects are not necessarily soft. There
are stacks of books on how to conduct exper-
iments with humans. Experimental computer
scientists can learn the relevant techniques or
ask for help. The side-bar provides some start-
ing points.

4.4 Misuse

The argument goes along the following lines:
\Give the managers or funding agencies a sin-
gle �gure of merit and they will use it blindly
to promote or eliminate the wrong research."
I think this is a red herring. Good managers,

good scientists, and good engineers all know
better than to rely on a single �gure of merit.
Second, there is a much greater danger in re-
lying on intuition and expert assertion alone.
Keeping decision makers in the dark has an
overwhelmingly higher damage potential than
informing them to the best of ones abilities.

5 Conclusion

Experimentation is central to the scienti�c
process. Only experiments test theories. Only
experiments can explore critical factors and
bring new phenomena to light so theories can
be formulated in the �rst place. Without ex-
periments in the tradition of science, computer
science is in danger of drying up and becoming
an auxiliary discipline. The current pressure
to concentrate on applications is the writing
on the wall.
I have no doubt that computer science is

a fundamental science of great intellectual
depth and importance. Much has already been
achieved. Computer technology has changed
society, and computer science is in the pro-
cess of deeply a�ecting the weltanschauung of

the general public. There is also much evi-
dence suggesting that the scienti�c method ap-
plies. As computer science leaves adolescence
behind, I hope to see the experimental branch
of this discipline 
ourish.

Acknowledgments This essay has bene�ted
tremendously from numerous discussions with
colleagues. I'm especially grateful for thought-
provoking comments by Les Hatton, Ernst
Heinz, James Hunt, Paul Lukowicz, Anneliese
v. Mayrhauser, David Notkin, Shari Lawrence
P
eeger, Adam Porter, Lutz Prechelt, and
Larry Votta.

References

[1] Victor R. Basili and B.T. Perricone. Soft-
ware errors and complexity: An empiri-
cal investigation. Communications of the

ACM, 27(1):42{52, January 1984.

[2] Frederick P. Brooks. Toolsmith II. Com-

munications of the ACM, 39(3):61{68,
March 1996.

[3] Al Davis. From the editor. IEEE Soft-

ware, 13(2):4{7, March 1996.

[4] Edward A. Feigenbaum. How the What
becomes the How. Communications of the

ACM, 39(5):97{104, May 1996.

[5] Juris Hartmanis. Turing award lecture:
On computational complexity and the na-
ture of computer science. Communica-

tions of the ACM, 37(10):37{43, October
1994.

[6] Les Hatton. Reexamining the
fault density{component size connection.
IEEE Software, 14(2):89{97, 1997.

[7] John N. Hooker. Needed: An empiri-
cal science of algorithms. Operations Re-
search, 42(2):201{212, March 1994.

11



[8] John C. Knight and Nancy G. Leveson.
An experimental evaluation of the as-
sumption of independence in multiver-
sion programming. IEEE Transactions on

Software Engineering, SE-12(1):96{109,
January 1986.

[9] Trevor Mudge. Report on the panel: How
can computer architecture researchers
avoid becoming the society for irrepro-
ducible results? Computer Architecture

News, 24(1):1{5, March 1996.

[10] Shari Lawrence P
eeger, Victor Basili,
Lionel Briand, and Khaled El-Emam. Re-
buttal to March 96 editorial. IEEE Soft-

ware, 13(4), July 1996.

[11] Adam A. Porter and P.M. Johnson. As-
sessing software review meetings: Re-
sults of a comparative analysis of two ex-
perimental studies. IEEE Transactions

on Software Engineering, 23(3):129{145,
March 1997.

[12] Lutz Prechelt and Walter F. Tichy. An
experiment to assess the bene�ts of inter-
module type checking. In Proc. Third

Intl. Software Metrics Symposium, pages
112{119, Berlin, March 1996. IEEE Com-
puter Society Press.

[13] Anthony Ralston and Edwin D. Reilly.
Encyclopedia of Computer Science, Third

Edition. Van Nostrand Reinhold, 1993.

[14] Raj Reddy. To dream the possible dream.
Communications of the ACM, 39(5):105{
112, May 1996.

[15] Walter F. Tichy, Paul Lukowicz, Lutz
Prechelt, and Ernst A. Heinz. Experi-
mental evaluation in computer science: A
quantitative study. The Journal of Sys-

tems and Software, 28(1):1{18, January
1995.

[16] Edward O. Wilson. The Diversity of Life.
Harvard University Press, 1992.

[17] Marvin V. Zelkowitz and Dolores Wal-
lace. Experimental models for validating
computer technology. IEEE Computer,
31(5), May 1998.

12


